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TP53-dependent toxicity of CRISPR/Cas9
cuts is differential across genomic loci
and can confound genetic screening

Miguel M. Álvarez 1, Josep Biayna 1,3 & Fran Supek 1,2

CRISPR/Cas9 gene editing can inactivate genes in a precise manner. This
process involves DNA double-strand breaks (DSB), which may incur a loss of
cell fitness. We hypothesize that DSB toxicity may be variable depending on
the chromatin environment in the targeted locus. Here, by analyzing isogenic
cell line pair CRISPR experiments jointly with previous screening data from
across ~900 cell lines, we show that TP53-associated break toxicity is higher in
genomic regions that harbor active chromatin, such as gene regulatory ele-
ments or transcription elongation histone marks. DSB repair pathway
choice and DNA sequence context also associate with toxicity. We also show
that, due to noise introduced by differential toxicity of sgRNA-targeted sites,
the power of genetic screens to detect conditional essentiality is reduced in
TP53 wild-type cells. Understanding the determinants of Cas9 cut toxicity will
help improve design of CRISPR reagents to avoid incidental selection of TP53-
deficient and/or DNA repair deficient cells.

ThewidespreadadoptionofCRISPR/Cas9geneeditingtechnology1–4

has revolutionized the systematic study of gene essentiality in
mammalian cells5. The study of genetic interactions and gene-drug
associations6usingCas9geneeditingisespeciallyactiveinthefieldof
cancer research,allowing the identificationofgenesessentialwithin
the genetic context of a tumoral tissue but not in healthy tissue, or
within a particular genetic background (commonly involving a
mutated tumor suppressor gene), or the identification of genes
whose inactivation in a tumor boosts the therapeutic effect of a
drug7–10.

Application of the CRISPR/Cas9 technology to perform gene
knockout (KO) is based on introducing a double-strand break (DSB)
into a coding region of a gene of interest via the Cas9 endonuclease
bound to a single-guide RNA (sgRNA), a part of which is com-
plementary to the target site. Frameshifting indels can be introduced
in the process of DSB repair, inactivating the gene11, more reliably so if
the frameshift also triggers the nonsense-mediated decay pathway to
degrade the mRNA12. The CRISPR/Cas9 system is often used for
genome-wide genetic screening experiments, where the process

usually begins with the lentiviral transduction of a cell culture with a
pool of sgRNAs that target virtually all known human genes, aiming to
introduce one sgRNA into each cell. Then, one can systematically
estimate gene essentialities by comparing sgRNA counts (obtained
through DNA sequencing) between a pool of cells sampled at an early
time-point, and a pool of cells sampled at the end of the experiment,
after the gene KOs have exerted effects on cell fitness. By extension,
conditional gene essentiality (i.e., that specific to a treatment) can be
estimated by comparing sgRNA gene abundance in a control versus a
treated pool of cells.

Theessentialityofagenemaydependonthegeneticbackground
of thestudiedcell line5.One special caseof this is theTP53 functional
status of a cell, where TP53-mutant cells are less likely to arrest or
undergo apoptosis due to DSBs, including those resulting from
Cas913–16. Recent reports have pointed out difficulties in capturing
signals of gene essentiality in CRISPR/Cas9 KO screening data when
usingTP53wild-typecell lines14,15, presumablyduetogreater toxicity
of DSBs13. However it is not clear if these results hold true
universally17,18.
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Motivated by reports of DSB toxicity interfering with gene
essentiality readouts in CRISPR/Cas9 screens, we were interested in
the impact of p53 status in cell line screens where gene essentiality
is compared between two or more conditions. These experiments
may be used, for instance, to reveal synthetic lethality relationships.
We studied this on an isogenic pair of cell lines that are wild-type
and KO for TP53, derived from human lung adenocarcinoma A549
cells. The generation and assaying of TP53-isogenic cell lines has
been done previously for RPE114,17–19 and MOLM1320 cell lines. The
treatment here consisted of a chemical inhibition of the ATR protein
(ATRi), for which many conditionally essential genes are known21.
Interestingly, we detected TP53-dependent effects on cell fitness at
the individual sgRNA-level, rather than gene-level, suggesting this
was not due to disruption of gene function as intended by the
screening. We further investigated the effect of this differential
sgRNA toxicity on the power to identify gene-ATRi interactions. A
systematic, genome-wide analysis of toxicities identified multiple
local correlates of this p53-associated effect, such as active chro-
matin marks and proximity to certain oligonucleotide motifs,
thus suggesting avenues for selecting gene editing sites to avoid
toxicities to TP53 wild-type cells. This knowledge could also be
applied to another promising application of CRISPR, therapeutic
in vivo or ex vivo gene editing, where potential for selection of
TP53−/− cells is a concern13,20,22 that may be allayed by a judicious
choice of loci targeted for editing.

Results
p53-mediated DSB toxicity does not prevent identifying uni-
versally essential genes
Following recent reports that presented apparently divergent
data14,15,17,18, we first asked whether TP53 status affects the ability to
recover universally essential genes in a CRISPR/Cas9 genetic screen.
We thus examined our A549 TP53 wild-type (TP53wt) and knockout
(TP53−/−) isogenic pair for ability to correctly classify known
essential11 from non-essential23 genes, considered as a set (see
Methods; we note that this benchmark considers two sets of genes
on the extremes of the fitness effect spectrum, and so it may not be
representative of the genes with more subtle fitness effects). We
used three biological pseudo-replicates, which differ in their treat-
ment: either untreated, doxycycline-treated, or doxycycline and
ATRi-treated (see Methods for details). The areas under the ROC
curve (AUROC) for the later time points (Supplementary Table 1)
indicate that the sgRNA dropout patterns accurately describe the
essentiality or non-essentiality of a gene, irrespective of the TP53
status. The high AUROC values, as well as the TP53wt data not
showing worse accuracy than TP53−/−, go in line with another recent
study that considered TP53-isogenic pairs17 (Supplementary
Table 2). Next, we examined sgRNA depletion levels. These corre-
lated with the essentiality of the targeted gene regardless of TP53
status (Fig. 1a). However, the counts of non-targeting sgRNAs
(which do not have a sequence match to any genomic region) are
systematically higher than counts of sgRNAs targeting non-essential
genes, even in TP53−/− samples, suggesting a general toxicity of Cas9
DSBs or downstream events. Next, we asked whether this toxicity is
different between TP53 backgrounds. Remarkably, while there was
no difference between TP53wt and TP53−/− samples regarding the
sgRNA counts of non-essential genes (Supplementary Fig. 1),
TP53wt samples had higher counts of the non-targeting sgRNAs.
This suggests that p53 activity exacerbates DSB toxicity, such that a
lack of DSB is particularly advantageous to TP53wt cells, in relative
terms. Overall, our data suggests that DSB created by Cas9 in var-
ious genomic locations can be toxic via a TP53-dependent
mechanism, and also supports previous claims17,18 that TP53 status
only modestly affects the ability to identify the universally essential
genes, considered as a set, in human cultured cells.

TP53 wild-type background can confound estimates of gene
selection
We were further interested in whether the p53-mediated fitness loss
can confound CRISPR/Cas9 essentiality assays, with respect to the
power to identify individual essential genes. We performed analyses
using MAGeCK-MLE24 on the A549 cell line, at 18 data points (see
Methods). Our aimwas to characterize the proportions of geneswhose
sgRNAs are either depleted (significantly negative beta score of
MAGeCK-MLE, i.e., essential genes), or increased (significantly positive
beta score, i.e., potential tumor suppressor genes) at time points t9,
t12, and t15, with respect to time point t0 (Fig. 1b). Across all nine
conditions, TP53wt samples have more genes showing a significant
signal of negative selection than TP53−/− samples do (Mann-Whitney
p =0.00004). This holds also when excluding the ATRi-treated sam-
ples (Mann-Whitney p = 0.00216 for both negative and for positive
selection), suggesting that the TP53wt background inflates estimates
of selection for some genes also under non-stressed conditions.

In light of this, we asked whether the inflated amount of appar-
ently selected genes in TP53wt could be explained solely by the dif-
ferential selection of sgRNAs that target genes related to the p53
pathway, which might plausibly be epistatic with TP53. Alternatively,
these apparently selected genes may be spurious hits caused by p53-
mediated DSB toxicity, which would be unrelated with the function of
the gene targeted by the sgRNA. We identified genes systematically
negatively selected exclusively in (a) TP53wt samples (n = 61), and (b)
TP53−/− samples (n = 6genes) (Supplementary Table 3).Of the 61 genes,
only four (MDM2,MDM4,USP7, andAURKA) are among the top-50TP53
interacting genes (gene functional associations as per STRING
database25; see Methods). MDM2 and MDM4 are known negative reg-
ulators of p53 activity, therefore it is expected that loss of MDM2 and
MDM4 would activate p53, leading to growth arrest or apoptosis of
TP53wt cells, however not of TP53−/− cells26. The remaining 57 genes
may be artifactual hits, identified due to DSB cut toxicity at particular
loci but not gene function.

Guide-level effects rather than gene-level effects may underlie
the p53-associated fitness loss
To investigate, we consulted conditional essentiality data from 649
TP53-mutant (TP53mut) and 257 TP53wt cell lines (classification
detailed in Methods) from Project Achilles27 and PScore28 combined29,
pooled across tumor types. The negatively selected genes that overlap
with the 61 genes set from the A549 analyses are, again,MDM2,MDM4,
and USP7, as well as only nine other genes (see Methods). To addi-
tionally support that the majority of the 61 hits are likely not epistatic
with TP53, we also ran a Gene Ontology (GO) enrichment analysis30,
where the enriched GO terms related to DNA damage response or to
cell cycle regulation account for only 23 of the 61-set genes (including
among others MDM2, MDM4, USP7, and AURKA, see Supplementary
Table 4). Figure 1c summarizes the gene overlaps described here. In
summary, themajority of the genes under apparent negative selection
in TP53wt cells do not appear related by function to TP53. This sug-
gests that something other than the function of the targeted gene —

suchas differential p53-mediatedDSB toxicity across various loci in the
genome— causes this readout.

Next, we additionally analysed the overlap of genes negatively
selected exclusively in TP53wt samples between various genome-wide
CRISPR screening libraries, comparing our A549 data with previous
data from the RPE1 cell line (normal retinal pigment epithelium) TP53-
isogenic pairs, which used Brunello14,31 and Gecko v219,32 libraries. The
concordance of TP53-associated hits between experiments using the
same library but in different cell lines is, interestingly, similar or larger
than the concordance between different libraries on the same cell line
(see Supplementary Text 1a and Fig. 1d). This is compatible with dif-
ferential p53-mediated DSB toxicity underlying our observations:
because the sgRNAs of different libraries target different loci within
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the same gene, they may elicit different DSB toxicity and thus fitness
effects, even though their effects on the function of the targeted gene
are presumably similar.

TP53 status can bias genetic screens for conditional essentiality
The analyses below suggest that thousands of sgRNAs from a genome-
wide CRISPR screening library can be subject to TP53-dependent
negative selection, in amanner largely unrelated to the function of the
targeted gene but instead associated with another property of the

locus. The high number of toxic loci (3308) contrasts with the much
lower number of genes (61) detected as significantly differentially
selected between TP53−/− and wild-type A549 cells (possibly because
MAGeCK-MLE —used to define the 61 gene set— downweights outlier
sgRNAs, so the effect of p53-toxicity in one sgRNA per gene could be
partially adjusted). Becauseusually atmost one sgRNAper gene (out of
four per gene in this library) is TP53-conditionally toxic (see Supple-
mentary Fig. 2), pooling fitness data per genemay be able to overcome
the noise this variable toxicity introduces. Thus a benchmark set of
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Fig. 1 | A TP53wild-type background can confound estimates of gene selection
in genetic screens. a Boxplots showing the pooled normalized sgRNA counts per
sample (essential and non-essential genes, and non-targeting sgRNAs; 15 day
samples are shown). Tested using 1-tailed Mann-Whitney. *** denotes a p <2.2e-16.
No adjustments were made for multiple comparisons. n = 7300 independent
sgRNAs examined over six independent experiments. b Barplot showing the
number of genes that are negatively (beta score<0) selected, per sample used in
this study. Beta score significance: FDR <0.25. c Venn (left) and corresponding
Euler (right) diagrams of the overlap of genes between four sets: genes negatively
selected exclusively in TP53wt in our samples (A549), genes negatively selected
exclusively in TP53wt in Project Achilles and Score (Achilles + Score), top-50 TP53-
interactors (TP53 pathway), and genes included in 19 GO terms related to DNA
damage and cell-cycle regulation that we found enriched with genes from the A549
set. d Results of the analysis of overlap between different cell lines and/or sgRNA
libraries detailed in Supplementary Text 1a: heatmap shows the log2 odds ratio of
the overlap of genes negatively selected exclusively in TP53wt, between different

experiments. R: Replicate, PR: Pseudo-replicate. Darker shades of red indicate
higher overlap. Black rectangles highlight the overlap between RPE1 Brunello
dataset with others. e Comparison between TP53-isogenic cell lines to assess biases
in identifying conditional essentiality from genetic screens. x and y axes represent
the standardizedbeta scores (Z-scores) for genes either in the control samples (incl.
doxycycline-treated; pseudo-replicates 1 and 2), or in the doxycycline+ATRi treated
samples, respectively, averaged across later time points and pseudo-replicates.
Coordinate axes were capped in order to zoom on the region of interest. The EM
clustering identified two gene clusters as the most likely model, represented by
black and gray dots. Black line represents the best fit linear model. The yellow
dashed diagonal line represents −2 standard deviations (SD) of the Z-score differ-
ence. The light yellow rectangle delimits the tentative significance area containing
genes negatively selected in the treatment, but not selected in the control sample
(i.e., potentially synthetic lethal with ATRi). The top-20 validated ATRi-sensitizing
genes are highlighted with color, and the top-7 (red) are further labelled. Source
data are provided as a Source Data file.
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known essential genes can be accurately identified in our A549 iso-
genic pair experiment, irrespective of the TP53 background (see Sup-
plementary Table 1 and Fig. 1a), consistent with similar recent analyses
on the RPE1 cell line TP53-isogenic pair17,18. This benchmark may be
considered easy because this set of essential genes is known to have a
fitness effect in cell culture irrespective of genetic background, and
also because their fitness effect is usually strong (see Supplementary
Fig. 3a). Nevertheless, many additional essential genes may exist,
whosefitness effects aremore subtle and/or conditional on the genetic
background, or, crucially, conditional on treatment conditions (see
Supplementary Fig. 3b).

We asked if the TP53 status can confound estimates in such cases
when conditional selection is measured by comparing a treatment and
control arm of an experiment —a common usage scenario for genetic
screens. Because Cas9 targeting of many non-essential genes triggers
p53-dependent toxicity in A549 cells (see above), these genes could
result in false negative errors in a comparison of two conditions, such
as presence versus absence of a drug. This is because they would be
depleted in both conditions due to the cut toxicity, thus the
observed effect sizes may be attenuated. Further, sgRNAs targeting
different genes and also different loci in the same gene may have
variedfitness effects in part due to the locus-specific toxicity of the cut.
This would introduce noise, making it harder to detect statisti-
cally significant differences between experimental conditions.

Overall, we hypothesized that the signal-to-noise ratio to detect
conditionally essential genes would be less favorable in a TP53wt
background compared to a TP53−/− background. To examine this, we
compared gene essentialities between the combined untreated and
doxycycline-treated pseudo-replicates (see Methods) versus the
pseudo-replicates treated with an ATR inhibitor drug (ATRi, see
Methods). As a benchmark, we used known ATRi-sensitizing genes
validated previously by compiling results across multiple human cell
lines21 (of note, these did not include A549 cells). We considered a
stringent set of validated ATRi-sensitizing genes (top-7, see Methods)
that are almost certain to be hits in any genetic background. We used
MAGeCK-MLE to estimate selection in theATRi-treated and the control
A549 samples (Fig. 1e), identifying two clusters of selection coefficients
across the TP53wt and TP53−/− cells, which broadly correspond to non-
selected genes and negatively selected genes. This latter cluster con-
tains six of the top-7 genes (KIAA1524/CIP2A, DNA polymerase ε
accessory subunits POLE3 and POLE4, TYMS, C17orf53/HROB, and
TOPBP1) in both TP53 backgrounds, indicating that our experiments
generallymirror the set of ATRi-sensitizing genes identifiedpreviously.
Next, we examined ATRi conditional essentiality in our data by con-
sidering standardized MAGeCK-MLE gene selection coefficients (Z-
scores; Methods), tested separately for the treatment condition (here,
ATRi) and the untreated condition. Across both TP53 backgrounds, in
the top-7 set only the genesKIAA1524/CIP2A and POLE3would pass this
test for conditional selection (i.e. negative selection in the treatment,
and no evidence of negative selection in the control). Additionally, the
TP53−/− background —but not the TP53wt— would identify TYMS and
C17orf53/HROB. Conversely, there are no top-7 genes that are identi-
fied only in the TP53wt background. The known POLE4 gene is a near-
hit with a stronger signal in the TP53−/− background (Z-score = −1.79)
than in the TP53wt background (Z-score = −1.63). Overall, this suggests
that the genes which sensitize to a drug treatment are more readily
recovered in the TP53−/−background than in the TP53wtbackgroundof
the same cell line. To refine this analysis, we examined the residuals of
the fit between Z-scores from ATRi condition and controls in the
TP53wtbackground, comparedwith the residuals of this samefit in the
TP53−/− background (Supplementary Fig. 4a). In four of the known top-
7 genes, the residuals are more negative (i.e., higher degree of ATRi-
conditionality) in the TP53−/− background (TYMS, KIAA1524/CIP2A,
POLE3, POLE4), while they are more negative in TP53wt in only two
genes (C17orf53/HROB and TOPBP1). This above suggests that the

power to detect gene conditional essentiality is hampered in TP53wt
cell lines compared to their TP53−/− counterpart.

Next, we checked that our results are not specific to one statistical
method, employing two different software: drugZ33 and BAGEL v234

(see Methods). The results support the hypothesis of a lower power of
detection of conditional essentiality in TP53wt cell lines (Supplemen-
tary Fig. 4b, c). We highlight an example gene, KIAA1524/CIP2A, with
onediscordant sgRNAwithin the gene showingTP53-associated effects
(Supplementary Text 1b). In addition, we ran a complementary analysis
that suggests that the TP53wt background can impede discovery of
unreported synthetic lethal genes (here, FBXW7, see Supplementary
Text 1c).

sgRNA-level analyses of cut toxicity reveal genomic and epige-
nomic determinants
We asked what are the properties of sgRNA-targeted loci that result in
stronger toxicity. Because pooling data acrossmultiple sgRNA loci in a
gene could obscure differences between loci, we focused on the
sgRNA-level (instead of gene-level) negative selection that is TP53-
dependent (see Methods). We identified 3308 sgRNAs that were
negatively selected in TP53wt relative to TP53−/−A549 cells (henceforth
target loci, see Methods). The total number of genes in which at least
one sgRNA locus is affected by TP53-dependent negative selection is
2990, reflecting that usually only one sgRNA was negatively selected
within a gene (see Supplementary Fig. 2). In addition, we note
2559 sgRNAs that were apparently positively selected in TP53wt rela-
tive to TP53−/− A549 cells; an analysis of LFCmean-to-variance ratio for
sgRNAs across the three pseudo-replicates suggests that this set may
be enriched with false positives (Supplementary Fig. 5a), and also that
part of the positive selectionmay be due to targeting some of the top-
50 genes with functional interactions with TP53 (STRING; O.R. = 2.78,
95% C.I. = [1e-3, 7885]) rather than sgRNA level effects.

Out of the 33 genes that we identified to have a differential p53-
related toxicity between sgRNA target positions (see TP53 wild-type
background can confound estimates of gene selection above), only
seven of them were identified to contain (as maximum) one target
locus. This is largely due to different stringency thresholds between
two algorithms employed for the two analyses (see Methods). A key
difference is that the gene-level MAGeCK-MLE analysis downweights
outlier sgRNAs, so the effect of p53-toxicity in one sgRNA per
gene could be partially adjusted. Furthermore, the mean sgRNA LFC
values are lower among the 33 genes than in the remaining library
(Mann-Whitney p < 2.2e-16), supporting that the gene-level and guide-
level analyses are not contradictory, but that the mean LFC threshold
employed to select the p53-toxic sgRNAs was very strict, moreso than
the MAGeCK-MLE analysis applied to the gene-level analysis.

We also defined another set of sgRNAs: those belonging to the
same genes as the target loci but not exhibiting TP53-dependent
toxicity, henceforth background loci, thus controlling for possible
effects on gene function. Using these two sets of loci, we investigated
the DNA sequence and epigenomic determinants that associate with
p53-mediated toxicity. As a control for the expected off-target effects
we also defined a set of 4,027 confidently non-selected sgRNAs (hen-
ceforth non-selected loci, see Methods). This suggested that sgRNA
off-targeting does contribute somewhat to p53-associated toxicity,
however also that off-targeting explains only aminor part (~13%) of the
p53-toxic loci (Supplementary Text 2a), which were excluded from
subsequent analysis.

Association of active chromatin features with high-p53-toxicity
sgRNA target sites
We further hypothesized that the toxicity of Cas9-induced DSBs may
be modulated by the chromatin state of the break locus, since diverse
DSB repair mechanisms are known to be associated with hetero-
chromatin, lamina-associated domains (LAD), and certain histone
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modifications35–37. We additionally considered chromatin accessibility
(as estimated by the DNase-I hypersensitive sites (DHS)) DNA replica-
tion timing (RT), and gene transcription levels (estimated by mRNA
abundance), since these factors were associated with mutation rates
due to differential activity of various DNA repair pathways38–40. In
addition, we also included cohesin binding sites and CTCF motifs
(which associate with transcription factor binding41 and promoter-
enhancer loops42), distance of DSB from 5′ gene end, gene length, CpG
content, and finally copy number (CN), a known important determi-
nant of non-specific Cas9 cut toxicity9,16,43. Finally, prompted by recent
studies of balance between DNA-repair pathways repairing Cas9-
induced DSB35,44, we considered whether sgRNA target sites that pro-
mote microhomology-mediated end joining (MMEJ) repair have dif-
ferent toxicity from those who do not (whose main mechanism of
generating indels would presumably be canonical NHEJ). In order to
assess the relevance of the DSB repair pathway relative activity in p53-
mediated break toxicity, we identified target sgRNAs with nearby DNA
microhomology (MH), required for MMEJ (see Methods).

Because various active chromatin marks tend to co-occur with
other epigenomic features such as early RT and high DHS, we
employed a methodology based on negative binomial (NB) regression
that can adjust for the confounding between variables, finding asso-
ciations particular to each of the epigenetic features after conditioning
on other considered features45,46 (see Methods). More specifically, in
order to identify covariates of TP53-mediated toxicity of sgRNAs we
performed two complementary analyses: (i) interaction of TP53 status
with eachof the genomic features, to detect an increaseofDSB toxicity
in feature-rich regions when p53 is intact, and, as a supporting
analysis, (ii) the toxicity of each featureper se in the TP53wt cells alone.
In other words, this approach detects chromatin environments that
increaseordecreaseDSB-related toxicity in presence of active p53 (see
Methods).

The main results (Fig. 2a; see Supplementary Fig. 6a for the
complete results) show that DSB in active open chromatin correlate
with a higher p53 toxicity: considered individually, euchromatin fea-
tures at sgRNA loci are significantly associated with increased fitness
loss in presence of p53, consistently for the three independent A549
experiments. This includes the presence of the active chromatin fea-
tures DNase, H3K27ac, H3K4me2, H2A.Z, H3K79me2, and H3K36me3;
the latter two features are associated with transcription elongation at
active gene bodies47. Consistently, highermRNA expression levels also
show this association, while presence of the heterochromatinmarkers
H3K27me3, H3K9me3, and lamin B1 have the opposite effect. One
possible explanation for this increase of p53-dependentDSB toxicity in
euchromatin could be that Cas9 has lower cutting efficiency in
heterochromatin35: in other words, sgRNAs targeting loci in active
open chromatinmight trigger higher overall toxicity due tohigherDSB
occurence rates and not because each DSB exerts more toxic effects.
However, our data do not favor this explanation (see Supplementary
Text 2b). Overall, the results support that p53 enhances Cas9 DSB
toxicity in active chromatin in human cells, in agreement with a recent
study20. Additionally, the higher CN of a target site is correlated with a
larger p53-dependent toxicity, as in previous reports16,27. Remarkably,
the effect sizes (correlation coefficients, averaged across pseudo-
replicates) of several chromatin features considered herein, for
instance the active transcription elongation marks H3K79me2
(−0.0272) and H3K36me3 (−0.0165), and DHS (−0.0376), are similar to
the known toxic effect of high CN segments in our data (−0.0396).
Using the known effects of CN gain as a unit of measurement for the
toxic effects, we estimate that targeting H3K79me2, H3K36me3 and
DHS regions would correspond to targeting a region with a 2-fold, 1.2-
fold, or 2.8-fold local increase in ploidy, respectively (see Methods).

Finally, we considered the possibility that DSBs could exert
additional toxic effects in a p53-independent manner. Indeed, there
seem tobeboth a p53-independent andp53-dependentDSB toxicity of

roughly similarmagnitudes, with somedifferences in the local features
associated, suggesting different underlying mechanisms. In both
cases there are active chromatin features that are associated to a
higher toxicity (Supplementary Fig. 7).

We also examined associations with all the considered variables
combined in a pairwise manner, where each variable is conditioned
upon each one of the others. The associations with TP53 status
reported above remain overall significant except in some cases, e.g.,
the modest effect of DSB distance from 5′ gene end disappears when
correcting for gene length (see Supplementary Text 2c). Of note, all
regression analyses adjust for gene essentiality as a covariate
(Demeter2 score48, see Methods), thus the fitness effects observed are
not attributable to loss of gene function, but are rather due to the DNA
break itself and/or the repair thereof.

DNA sequence motifs enrichment near high-p53-toxicity sgRNA
target sites
Motivated by the known associations of DNA motifs, such as various
types of repeats or CTCF binding sites, with DNA repair and
mutagenesis41,49,50, we hypothesized that certain DNA motifs may be
commonly proximal to sites that elicit p53-related toxic effects. To
investigate, we ran HOMER v351 to identify DNA motifs enriched in
nearby target loci in comparison with background loci, considering
three distance ranges centered at the Cas9 cut position (from 16 nt to
100 nt), while contrasting the TP53wt versus TP53−/− backgrounds (see
Methods). Statistical testing on HOMER-prioritized motifs was per-
formed by NB regressions of the sgRNA read counts, in the same
fashion as above, based on the presence or absence of each candidate
motif (HOMER p < 1e-5) from each HOMER analysis, testing for inter-
action with TP53 status. There were threemotif clusters (seeMethods)
whose TP53 interaction was significant and consistent across the three
A549 pseudo-replicate experiments (Fig. 2d, Supplementary Fig. 8a); a
total of 21 motifs are included in these clusters by similarity criteria
(HOMER score >0.6) (Fig. 2e, Supplementary Fig. 8b). For example,
motif TCGCGGGGGA from motif cluster 1 encompasses the cut posi-
tion in 9.69% of target but 5.91% of background loci (HOMER p = 1e-10;
average interaction effect size −0.12); furthermore, the motifs in this
cluster have an average starting position located at a distance of
8.13 ± 1.34 bp upstream from the cut site. In the same manner, motif
clusters 2 and 3 each consist of similar motifs positioned at an average
25.52 ± 9.98 bp, and 50.77 ± 26.73 bp from the break, respectively. Of
note, many of these motifs contain a CCCC segment prefixed or suf-
fixed by one or more Gs (or a reverse complement thereof). Recent
work reported a higher toxicity of high-GC content sgRNAs52. Our
analysis solidifies this, proposing a TP53-dependentmechanismaswell
as nominating proximal DNAmotifs consisting of consecutive Cs or Gs
as correlates of Cas9 toxicity.

Similarly, we tested associations with the PAM sequence context
of the target loci, contrasting against background loci (see Methods).
We observed that a PAM sequence with a cytosine 1 bp upstream (5′-
CNGG-3′) is strongly correlated with higher p53 toxicity (Fig. 2f; see
also Supplementary Fig. 9a for all associations, and Supplementary
Fig. 9b, c for the distributions of PAM trinucleotides and their con-
texts). The CGGG context was particularly toxic (average interaction
effect size −0.22). Overall, we suggest that a careful Cas9 reagent
design that avoids certain sequence patterns close to the sgRNA target
locus could minimize p53 toxicity.

Additionally, we considered the p53-independent versus the p53-
dependent fitness effects. The analyses show that a cytosine directly
upstream of the PAM increases p53-independent DSB toxicity (x-axis;
negative values indicate higher toxicity), and confirms that p53
increases this toxicity (y-axis) (Supplementary Fig. 10). However, a
guanine upstream of the PAM also increases the p53-dependent toxi-
city (y-axis in Supplementary Fig. 10), while this guanine appears
protective from p53-independent DSB toxicity.
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Role of HR versus NHEJ repair pathway in Cas9 DSB toxicity
across chromatin states
Recent studies have shown that Cas9 DSB, considered overall, are
more toxic in TP53wt cells13,15,16. This was suggested to potentially
cause problems in CRISPR genetic screenings, such as a reduced sen-
sitivity for identifying gene essentiality14,17,18. Our data demonstrates
that Cas9-induced p53 toxicity is not homogeneous genome-wide in a

manner associated with local chromatin features, DNA sequence
motifs and microhomologies (see above). A recent study analyzed a
panel of sgRNA target sites, and suggested that DSB repair pathway
differential recruitment depends on chromatin accessibility35. We
thus used genome-wide data sets to test the hypothesis that DSB-
induced p53 toxicity at a genomic region depends on the DSB-repair
mechanism. In particular, we made use of data from genetic screens
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previously performed on 856 cell lines (Achilles 21Q2) to ask whether
HR activity affects p53-dependent DSB toxicity, and if so, whether this
occurs variably across open versus closed chromatin. We stratified the
cell lines into HR deficient (HRmut) and proficient (HRwt) based on
presence of deleterious variants in known HR genes, while restricting
to four tissues-of-origin where HR deficiencies have been reported in
tumors53. By analogy to the above analyses, we defined a set of 3,998
target loci (sgRNAs that potentially trigger more p53 toxicity; see
Methods, and Supplementary Fig. 12) and a set of 8,625 sgRNAs with
low p53 toxicity. We employed these two sgRNA sets to study the
effect of the interaction between TP53 and HRmutation status on DSB
toxicity. Firstly, by using the target loci (Fig. 2g, blue), we observe an
expected increase of DSB toxicity in TP53wt cell lines, which is how-
ever significantly less steep in HRwt than in HRmut cell lines (regres-
sion coefficient −0.11 versus −0.14, respectively; interaction term
p = 3.9e-9); this suggests that DSBs repaired with HR are less p53-toxic.
Secondly, by examining the set of loci with low p53-mediated toxicity
(Fig. 2g, red), in the case of HRmut cell lines there is a slight p53
toxicity, however in the case of the HRwt cell lines, there is no p53
toxicity (interaction p =0.0004). Considered together, these results
suggest that the repair of Cas9 DSBs via the HR pathway triggers less
toxicity than with other competing pathways; this may apply to the
p53-associated toxicity as well as to other mechanisms of toxicity
arising from Cas9 activity.

Next, we performed another analysis of the previous cell line
panel data to interrogate whether this HR-dependent toxicity depends
on the chromatin environment. In particular, we applied the NB
regression method used in previous sections, to test statistical inter-
actions betweenHR status and a chromatin feature, this time including
library-wide sgRNAs (see Methods). This regression analysis supports
the above observation that DSB toxicity is reduced in HRwt cell lines,
moreso in active chromatin regions that we report as triggering more
p53 toxicity, especially H3K79me2 (Fig. 2h).

In summary, our data is compatible with a mechanism where a
DSB repair pathway other than HR repair contributes to Cas9 toxicity.
This toxic mechanism is likely related with the canonical NHEJ path-
way, because the alt-NHEJ promoted by microhomologies flanking the
cut site appeared associatedwith protection from toxicity (see above).
Supporting this hypothesis, the abundance of the key NHEJ protein
XRCC4peaks around the cut positionof the p53-toxic compared to the

non-p53-toxic sgRNAs (Supplementary Fig. 16); this is also consistent
with enriched chromatinmarks around cut sites and their known links
with various DSB repair mechanisms (discussed in Supplementary
Text 2d). The canonical NHEJ-related mechanism either generates a
higher amount of toxic intermediates when operative in active chro-
matin, or the amount generated is the same but their toxicity is higher
in active chromatin. In addition to providingmechanistic insight, these
statistical associations on a panel of 124 cell lines serve as a validation
of the general link of p53 toxicity with active chromatin and other
related features, as reported in our experimental dataset on the A549
isogenic pair.

Discussion
Our data supports that Cas9 DSB-triggered toxicity mediated by p53
activity is a common occurrence in human cells13,15,16. p53-mediated
toxicity is however highly variable depending on the locus targeted:
both the DNA sequence and the epigenomic state in the region sur-
rounding the target locus predict the fitness penalty of the cut. For
instance, DSBs at sgRNA target sequences that are located in active,
accessible chromatin trigger a stronger p53-toxic response, in agree-
ment with a recent study20. These analyses can provide guidelines for
choice of target sites for gene editing to minimize toxic effects; see
Supplementary Text 2e for more on these guidelines and design of an
example p53-toxicity score, which we applied to rank loci targeted in
the human genome-wide screening libraries Brunello, TKO and Gecko
(see Supplementary Dataset 2). Furthermore, our p53-toxicity score
supports that there is a reduction of screening sensitivity when using
sgRNAs with high p53-toxicity (Supplementary Text 2f). However,
given that these genome-wide libraries were not specifically designed
to measure the variation in toxicity of DSB in different chromatin
environments, future experiments using a custom sgRNA library
would allow amore comprehensive toxic/non-toxic sgRNA classifier to
be developed.

Our analyses are in line with concerns that Cas9 activity in human
cells, when used ex vivo or in vivo for therapeutic purposes, might
select for TP53-mutant cells thereby having tumorigenic
potential13,20,22. A judicious choice of loci targeted by gene editing
reagents to minimize TP53-mediated toxicity would allay the concerns
about such side effects. Another important application of our analyses
involves the design of reagents for genetic screening libraries and

Fig. 2 | Association of active chromatin marks with high-p53-toxicity sgRNA
target sites. a NB regression coefficients for each chromatin feature tested inde-
pendently. Each colour represents one of the three pseudo-replicates. The
regression coefficients are those from the interaction of TP53 status with a given
variable (see Supplementary Fig. 6a (bottom) for the effect of each variable per se,
including only the TP53wt samples). Negative regression coefficients indicate a
decrease of sgRNA counts. All regression coefficients have FDR<0.25. n = 10,050
independent sgRNAs and 14 chromatin features were examined over six indepen-
dent samples at three time points. Error bars represent the SE of the mean.
b Interpretation of the regression coefficients of the interactions between TP53
status and three selected features. There is a larger departure of the fitted sgRNA
counts if the feature is present (its absence is scaled to 1) in TP53wt samples. For
active chromatin feature DHS, the departure happens towards lower sgRNA counts
in TP53wt samples (i.e., more p53 toxicity vinculated to presence of the feature),
while the opposite is true for Lamin B1 (inactive chromatin) and microhomology.
Error bars are 95% CI. Pseudo-replicates follow the same color scheme as in Fig. 1a.
Schematics are included to aid interpretation of DHS (bottom left) and Lamin B1
and Microhomology (bottom right); the actual regressions are in Supplementary
Fig. 6c. n = 10,050 independent sgRNAs and three chromatin features examined
over six independent experiments. c Local abundance of a feature (represented as
the ChipSeq fold-enrichment ratio), averaged at each 400bp-bin position relative
to the sgRNA cut position (denoted 0), shown for the top 200 target loci exhibiting
high p53 toxicity (larger negative LFC, red) and top 200 non-selected loci (LFC
closer to0,blue). Vertical lines represent the 25–75% interquartile rangeat eachbin,
and left-to-right lines connect the medians. Supplementary Fig. 6d shows the

corresponding figures when using another score. d Clusters of DNA sequence
motifs identified by HOMER as enriched near target loci (FDR < 1e-5) —at different
genomic distance to the sgRNA cut position— that show a significant (FDR<0.25;
red crosses indicate FDR >0.25) and consistent associationwith higher p53 toxicity
in theNB regressions (see Supplementary Fig. 8 for the effect of each variable alone
regressed against the same sgRNA set, including only the TP53wt samples).
e Separate regression results for motifs contained in themotif clusters. Below each
motif are shown its relative frequencies at target (red) and background (blue) loci.
The actual motif sequences are shown in Supplementary Fig. 8B. f Associations
with all PAM sequence contexts, as regression coefficients. Top associations with
DSB-related p53 toxicity are labelled. See Supplementary Fig. 9 for additional
information. g Interaction of TP53 and HR repair gene mutational status, using
either the counts from the target loci (blue) or from the control loci (red). For the
regressions includingonlyHRmut cell lines (dashed lines) the regressioncoefficient
and associated p-value are shown; for the regressions including only HRwt cell lines
(full lines) the regression coefficient and p-value of the interaction of TP53 and HR
are shown. Error bars represent the 95% CI. n = 16,174 independent sgRNAs exam-
ined over 124 independent cell lines. h Regression coefficients of the interaction
between each feature and the HR repair mutational status. Positive coefficients
indicate that the increment of DSB toxicity when a feature is present (or more
abundant) is alleviated in HRwt cells. Error bars represent the SE of the mean. FDR
adjustment was performed to account for multiple comparisons. n = 56,855 inde-
pendent sgRNAs and 20 chromatin features examined over 124 independent cell
lines. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-32285-1

Nature Communications |         (2022) 13:4520 7



interpretation of data coming from screening experiments in TP53wt
cells. We suggest that regions marked by certain active chromatin
features such as DHS (associated with gene regulatory regions),
H3K79me2 and H3K36me3 (associated with certain segments in tran-
scribed gene bodies), would be advisable to avoid if possible, aswell as
the proximity of certain DNA motifs and the existence of off-target
regions. Furthemore, while the mechanistic details underlying these
associations remain to be elucidated, we suggest the exacerbated cut
toxicity is at least partly due to preferential activity of different DSB
repair pathways. Interestingly, among the chromatin marks that we
found significant, H3K79 and H3K36 methylation were suggested to
regulate HR repair and other repair pathways36,37,54–56. Our analyses
suggest that use of MMEJ and HR pathways is associated with a less-
pronounced TP53-mediated fitness loss; by elimination, we infer that
canonicalNHEJ or a relatedmechanismmaybe causal to the toxicity. In
addition, HR is thought to be preferred for heterochromatic DSBs57,
which is compatiblewith ourobservationof a higher toxicity ofDSBs in
euchromatin. Use of Cas9 gene editing reagents might thus select for
cells deficient in a particular DNA repair pathway such as NHEJ,
resulting in compensation using other pathways such asMMEJ andHR.
The latter can be mutagenic and recombinogenic, respectively, thus
promoting genomic instability in Cas9-edited cells.

Next, it is conceivable that the DNA motifs we found associated
with toxicity might reflect propensity to form various secondary
structures and/or bind proteins that could interfere with normal pro-
cessing of DSBs. Likewise, we found that a cytosine located upstream
of NGG PAM sequences is associated with higher p53 toxicity, which
might plausibly be due to differential Cas9 binding and/or activity
dependent on the sequence near the PAM. A related issue are the DNA
microhomologies near targeted sites: we propose that MMEJ may be a
less toxic alternative compared to the competingDSB repair pathways,
suggesting a potential utility of designing gene editing reagents to
target regions enriched for microhomologies to promote MMEJ.

Incidentally, it has been shown that TP53 status may influence the
expression of Cas913, potentially constituting a confounder in our
analyses. However, an underexpression of Cas9 in TP53wt cells13

should equally affect the efficiency of all sgRNAs in the library, i.e. it
would not explain why only one or two of the sgRNAs targeting a gene
has different effects between TP53wild-type andmutant backgrounds.
Likewise, lentiviral transduction efficiency could be hampered by p53
activity58, however, since all sgRNA constructs are transduced via the
same type of lentivirus, again all sgRNAs in the library should be
equally affected. Finally, we also acknowledge that lentiviral integra-
tion has a preference towards active chromatin59, however plausibly
the integration site for a particular lentivirus DNA would not be cor-
related with the sgRNA sequence encoded within (and thus also the
sgRNA target site) and so would not confound our analyses.

Finally, because the fitness effects due to DSB-related p53
toxicity are often variable between different sgRNAs targeting one
gene in genome-wide screening libraries, p53 toxicity of DSB can
thwart genetic screening experiments. We find TP53 wild-type cells
to have an inflation of gene knockouts that decrease fitness, com-
pared to their TP53−/− counterpart, although the assessment of gene
essentiality is still possible17,18. However, we suggest these con-
founding effects become more acute when comparing gene essen-
tiality between different conditions (e.g., control vs. drug
treatment), which is a common type of experimental design of
CRISPR screening assays. Overall, our analyses suggest additional
principles that could be implemented to enhance the design of
CRISPR screening libraries (and also to refine statistical methods for
screening data analysis), in order to facilitate robust discovery of
conditionally essential genes. Similarly, following the same design
principles would reduce the toxicity of Cas9 activity to TP53 wild-
type cells, minimizing concerns that gene editing might select for
cells that predispose to genomic instability and cancer risk.

Methods
Cell culture and CRISPR-Cas9 screening
A549 cell line was generously provided by the Nebreda laboratory (IRB
Barcelona), and it was authenticated by using an STR profile analy-
sis. The cell culture, generation of doxycycline-induced cells, and
generation of theTP53-isogenic pair of A549 cells was as described in
our recent study, Biayna et al.60, fromwherewe quote verbatim: “A549
cell lines were […] maintained with RPMI-1640 or DMEMmedium and
supplemented with 10% fetal bovine serum and 5% penicillin-
streptomycin. […] The NickaseNinja (ATUM, USA) vector co-
expressing 2 gRNAs (pD1401-AD: CMV-Cas9N-2A-GFP, Cas9-ElecD)
was used to generate the TP53 KO […] cells. TP53 gRNA sequences
(GCAGTCACAGCACATGACGG) (GATGGCCATGGCGCGGACGC) […]
were designed using the ATUM gRNA Design Tool. Moreover, 48 h
post-transduction, positive GFP cells were sorted by FACS (FACSAria
Fusion, BD, USA) and plated into 96-well plates. After 15 days, clones
were collected and validated by western blot using the following pri-
mary antibodies: p53 (1:1,000; sc-47698, Santa Cruz Biotechnology);
Vinculin (1:5,000; V9264,MilliporeSigma) […]. Lentiviral particleswere
produced in HEK-293T cells using a pLKO.1-shRNA plasmid. The cell
lines were transduced and selected with puromycin for 72 h […]”.
Moreover the genetic screening data on the A549 TP53wt and TP53−/−

cells (the pseudoreplicates with and without doxycycline) was as
reported in Biayna et al.60, from where we quote verbatim “For sgRNA
screening of the A549 […], A549TP53−/− […], cells were infected with the
Brunello CRISPR Knockout Pooled Library (73179-LV, Addgene, USA)31.
Infection with lentiviruses was performed at an MOI ≤0.4 for all cell
lines. At 24 h postinfection, the medium was replaced with a selection
medium containing puromycin (2 µg/mL). After 5 to 6 days of selec-
tion, cellswere split into thedifferent experimental conditions: […] For
A549 cell line, without and with DOX (3.9 µg/ml). All cell lines were
passaged every 3 days (up to 15 days), and for each time point, the
number of cells needed to maintain the predetermined coverage of
400- to 500-fold was taken. DNA extraction was performed using the
DNA genomic Kit (Puregene Cell and Tissue Kit, Qiagen, Germany)”;
note that in the current analysis we did not use previous data gener-
ated from APOBEC3A-overexpressing cells60, and that we have per-
formed additional experiments to screen both TP53 genetic
backgrounds using a treatment combining doxycycline (DOX) and
0.5μM of the ataxia telangiectasia and Rad3-related inhibitor (ATRi)
AZD6738 (HY-19323, MedChemExpress) after the aforementioned five
to six days of puromycin selection. A scheme of the experimental
design is shown in Supplementary Fig. 11. NGS library preparation and
sequencing was as described in Biayna et al.60, from where we quote
verbatim: “NGS librarieswere prepared by 2-step PCR: For the first one,
a total of 20 µg of DNA per a 12× reaction was used, and for the second
PCR, a set of primers harboring Illumina TruSeq adapters aswell as the
barcodes for multiplexing were used […]. Sequencing was carried out
in the CNAG sequencing unit using 6 lanes of a 1 × 50 HiSeq”.

Data analysis
MAGeCK-VISPR24 was used for alignment of the generated reads to the
library, read counting, read countmedian normalization—based on (i)
all sgRNAs, (ii) non-targeting control sgRNAs, or (iii) non-essential
genes—, quality control (QC) analysis of the samples, and essentiality
analyses using the (i) log2 fold change (LFC) of sgRNA counts or (ii)
maximum-likelihood estimation (MAGeCK-MLE) algorithms provided
by MAGeCK-VISPR. In the case of MAGeCK-MLE, beta score sig-
nificance p-value was estimated through 10 random sgRNA permuta-
tions, and a cutoff of false discovery rate (FDR) < 0.25 was applied. QC
did not show a batch effect for the 12 and 15 days samples resulting
from the sequencing arrangement. Each batch was treated indepen-
dently in the normalization step, and the resulting normalized counts
were either averaged or treated as technical replicates at each time
point and treatment, depending on the analysis. Throughout the
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figures, all boxplots are defined in the same manner, namely: the
central line represents the median, the lower and upper box bounds
represent the 25th and 75th percentiles, the upper and lower whiskers
extend from their respective bounds no further than 1.5 times the
inter-quartile range (IQR), and data points beyond the whiskers (i.e.,
outliers) are plotted individually.

p53-mediated DSB toxicity does not prevent identifying uni-
versally essential genes
To evaluate howwell the sgRNA dropout captures gene essentiality
in the later time points, we used the R package pROC61 to calculate
the area under the receiver operating characteristic curve (AUROC)
based on a list of 680 out of 684 essential11 and 896 out of 927 non-
essential23 genes, sorted accordingly to the mean normalized
sgRNA counts per gene. The same package was employed for
comparing AUROC between TP53 genotypes, using the bootstrap
method with all defaults (1-tailed test). Mann-Whitney tests were
also employed to compare pooled raw sgRNA counts between (i)
essential and non-essential genes, and (ii) non-essential and 1000
control sgRNAs included in Brunello library that do not target any
genomic region.

TP53 wild-type background can confound estimates of gene
selection
MAGECK-MLE analyses consisted of 12 normalized sgRNA count level
comparisons: each possible combination of a TP53 genotype (wild-
type or knockout), a condition (untreated, doxycycline-treated, or
doxycycline andATRi-treated), and a timepoint (9, 12, or 15 days of cell
culture), compared to the corresponding time 0 sample. Beta score
permutation FDR threshold for gene selection was 0.25. The untreated
and doxycycline-treated samples could be considered pseudo-
replicates 1 and 2, since no doxycycline-related toxicity nor condi-
tional essentiality have been detected in A54960. The untreated and
doxycycline-treated samples could be considered pseudo-replicates 1
and 2, since no doxycycline-related toxicity nor conditional essenti-
ality have been detected in A549. Meanwhile, samples treated with
both doxycycline and ATRi could be (conservatively) considered
pseudo-replicates 3, bearing in mind that ATRi has been shown to be
toxic by itself as well as in combination with gene inactivation21. The
four sets of genes that, upon knockout, were systematically selected
(either positively or negatively) in one of the TP53 status and not in the
other, across pseudo-replicates 1 and 2 and later time points (see
Supplementary Table 3), were ascertained in the following way: for a
gene to be considered systematically negatively selected only in
TP53wt, this gene must be negatively selected in all pseudo-replicate
TP53wt samples at later time points (t9, t12, and t15, where signal of
selection would be more evident), while not being negatively selected
in any corresponding TP53−/− sample. The top-50TP53 interactors were
obtained from STRING25 for all interaction sources and a minimum
required interaction score of 0.9. We used the ANOVA function from
the gdsctools62 python package to compare pan-cancer essentiality
data between wild-type and TP53mut cell lines from the combined
projects Achilles and PScore, with an FDR <0.25 threshold for condi-
tional essentiality. We classified a cell line as TP53mut if it has at least
one mutation that qualifies as pathogenic by passing both of these
filters: (i) it has an allele frequency <0.001 according to gnomAD63, and
(ii) it is annotated as frameshift indel or nonsense, or asmissense but it
is present in at least three patients from three cohorts from the project
GENIE64 v10.1 (MSK-IMPACT341, MSK-IMPACT410, and MSK-
IMPACT468), obtained fromcBioPortal65 (see SupplementaryDataset 1
for the classification of cell lines by mutation status). The nine other
genes overlapping the ones identified in the A549 analyses were NCL,
CSNK1A1, HUWE1, NOB1, RHBDF1, RPF1, RPS29, HIRA, and SENP6. We
used GOrilla30 to detect GO terms enriched with the set of negatively

selected genes, with the settings Two unranked lists of genes, and all
gene ontologies (Process, Function, and Component).

Overlap of confounded negative selection with public datasets
We used two public datasets consisting of TP53-isogenic pairs of the
RPE1 cell line that employ different whole-genome CRISPR libraries:
Brunello14 and Gecko v219, respectively. Only the latest time point was
included fromeachdataset (including our A549dataset), as well as two
replicates from each TP53 status except in the case of the RPE1
Brunello-based dataset, in which one TP53wt replicate (R2 at day 28)
was removed due to concerns about its quality. It is worth noting that
this dataset has been considered to have quality issues such as poor
editing efficiency17,18. The sgRNA count normalization used in these
analyses was MAGeCK’s median normalization based on the sets of
non-targeting sgRNAs, because this inflates negative selection in
TP53wt allowing for more negatively selected genes within each
dataset replicate, and therefore more overlap between the different
datasets. For the analyses we kept only the genes present both in
Brunello and Gecko libraries (18,547 genes).

TP53 status can bias genetic screens for conditional essentiality
To detect gene essentiality conditional on ATRi, we compared the
standardizedbeta score estimatedby theMAGeCK-MLE algorithm (see
Data analysis and Differential gene selection patterns above), calculat-
ing the mean beta score for the control (without doxycycline) and
doxycycline-treated samples and contrasting them to the doxycycline
+ATRi-treated samples. The top-20 ATRi-sensitizing genes were vali-
dated by at least one method, while the top-7 were validated by more
than onemethod21: the latter are POLE3, POLE4, KIAA1524/CIP2A, TYMS,
C17orf53/HROB, TOPBP1, and APEX2. The EMclust R package was
employed for the expectation-maximization clustering step. We
employed drugZ33 and BAGEL v234 software to check whether the
MAGeCK-MLE results are also replicated by other methods. drugZ was
run with all defaults. The normZ score is a result of the integration of
the different control and time points, and a negative normZ suggests
conditional essentiality. BAGEL calculates fold change values from raw
sgRNA counts, based on all time points for each treatment, and uses
these to obtain the log2 bayes factor (BF) for each gene: namely, a
positive BF indicates confidence that the gene is essential. For BF cal-
culation, we used the core-essential and non-essential gene sets pro-
vided with the program as controls, and the default number of
bootstrap iterations. BF values were averaged across control or dox-
ycycline+ATRi samples, in the same manner as above. Feature abun-
dance within KIAA1524/CIP2A was represented by the ChipSeq fold-
enrichment ratio per 100 bp bin, in square root scale.

Discovery of putative A549-specific ATRi-sensitizing genes is
hampered in TP53wt
The randomization consisted on reshuffling 1000 times the hit/non-hit
gene labels within each of the 12 possible comparisons that underlie
the main analyses (see TP53 status can bias genetic screens for condi-
tional essentiality above): the control was either a non-treated (without
doxycycline) or doxycycline-treated sample (i.e., without beta score
averaging), whose beta score were compared to doxycycline+ATRi-
treated samples, for the six possible combinations of time point 9, 12,
or 15 (again, without beta score averaging), and TP53wt or TP53−/−. A
gene was considered a hit when its normalized beta score had a value
non-different from 0 in the control, lower than 0 in the ATRi-treated
sample, and the difference of both beta score was also different from
0, with 2 SD as threshold of significance.We checked howoften ≥2 hits
occurred in ≥4 out of 6 TP53−/− and 0 out of 6 TP53wt comparisons, to
approximate the probability that the two potential ATRi-sensitizing
genes are not due to randomness: this occurred in 89 out of 1000
iterations.
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sgRNA-level analyses of cut toxicity reveal genomic and epige-
nomic determinants
For the following analyses, count normalization was based on the
median of the set of non-essential genes recommended by the
MAGeCK-VISPR authors66, we merged the batches from each t12 and
t15 sample previous to count normalization, and applied the remove-0
option. To restrict our analyses to a set of confidently negatively-
selected sgRNAs, we focused on the LFC per individual sgRNA (instead
of the average sgRNA LFC per gene) from the comparisons of counts
between the A549 TP53wt (pseudo-treatment) and TP53−/− (pseudo-
control) samples, for all treatments (control (without doxycycline),
doxycycline-treated, and doxycycline+ATRi-treated) and later times
(t9, t12, and t15); for example, TP53wtwithout doxycycline at t9 versus
TP53−/− without doxycycline at t9. An sgRNA was considered to be
negatively selected in TP53wt (relative to TP53−/−) if LFC < −0.5 for all
conditions (henceforth target loci). For the set of non-selected
sgRNAs, we defined the threshold as |LFC | < 0.5. We removed target
sgRNAs located within the top-50 TP53 interactors list from STRING25,
as well aswithin genes present in enrichedGO terms.We also removed
genes belonging to the families of olfactory receptor (OR), ubiquitin-
specific peptidase (USP), and family with sequence similarity (FAM)
genes, since gene families could be particularly enriched for para-
logous sequences67. An extra analysis concerning the sgRNAs that are
positively selected in TP53wt showed that there is not a consistent
TP53 effect in all pseudo-replicates, suggesting that these positive
selection signals could rather be experimental noise. This noise could
be related to a lower Cas9 activity in TP53wt samples, as it has been
recently suggested13.

Off-targeting enrichment at high-p53-toxicity sgRNA target sites
We employed Crisprseek68 to calculate the total Cutting Frequency
Determination31 (CFD) scores for the sets of target andnon-selected
loci. Total CFD consists on the sum of the CFD scores of the top-5
off-targets. A target sgRNA was considered to have high off-tar-
geting, and therefore removed, if it had any exact match, and/or it
had a CFD above that from the 95 percentile non-selected locus
(CFD = 3.14).

Association of active chromatin features with high-p53-toxicity
sgRNA target sites
The negative binomial (NB) regression analyses45,46 have as dependent
variable the sgRNA counts from all filtered (see previous steps) target
loci, as well as from all the corresponding background loci (remaining
sgRNAs in the same genes as the target loci), from sample pseudo-
replicates 1 (untreated), 2 (doxycycline-treated), and 3 (doxycycline
and ATRi-treated), at time points 9, 12, and 15. The explanatory vari-
ables were TP53 status (wild-type versus knockout) and several chro-
matin features andDNAmotifs. These include,first, A549-specific data:
(i) genome-wide chromatin mark ChipSeq abundance maps, obtained
from RoadMap Epigenomics Consortium69 (DHS, H3K9ac, H3K27ac,
H3K4me1, H3K4me2, H3K4me3, H4K20me1, H2A.Z, H3K79me2,
H3K36me3, H3K9me3, andH3K27me3), each classified into 0 (absence
of feature) and 1 and 2 bins (increasing abundance of the feature,
encompassing the same genome sizes), and with bin 1 removed to
stress the differences between abundance and absenceof a feature; (ii)
Brunello library PAM sequences (with 1-bp context upstream or
downstream); (iii) Presence versus absence ofmicrohomology (MH): it
is considered that two properties of the MH motifs greatly determine
the rate ofMMEJ recruitment: length of themotif, and position relative
to the DSB, with 5–25 bp MH motif pairs both at 10 bp from the DSB
position being optimal70 —based on this, we applied a heuristic
approach, consideringing an sgRNA as a candidate forMMEJ uponDSB
if it contains at least one MHmotif pair that is 5–15 bp long and within
15 bp from the DSB position; (iv) Long versus short genes (comprising
two equally-sized bins after the removal of genes longer than 200 kb);

(v) Copy number data originally classified into 1 (low) to 7 (high) bins71,
further binarized into 5 to 7 versus 1 to 4; and vi) Other quantitative
features: distance of DSB to 5′ gene end, scaled from 0 to 1; gene
expression levels72; and number of CpG dimers in the target context
sequence. Secondly, we also employed chromatin feature maps
pooled across several cell lines45, including (i) Replication time, ori-
ginally classified into 0 (no replication) and 1 to 6 bins (later to earlier
replication time), which were binarized into 6 (early) versus 1 to 5
(late). A few 0-bin sgRNAs were removed from the analysis, since we
expect gene regions to replicate; (ii) Presence versus absence ofmotifs
with CTCF and/or CTCF Cohesin; and (iii) High versus low gene
expression levels. We also included presence versus absence of Lamin
B1 (which indicates lamina associated domains) based on NKI Nuclear
Lamina Associated Domains (LaminB1 DamID) tracks73 from TIG-3
fibroblasts, obtained from genome.ucsc.edu. Finally, as a correcting
variable we included the mean gene essentiality based on RNA inacti-
vation across 712 cell lines from theDEMETER2project48 (D2).We used
liftOver74 to convert the genomic coordinates of Brunello sgRNA target
sequences from hg38 into hg19, in order to match the build of the
chromatin featuremaps detailed above. See Supplementary Fig. 9b for
the distribution of bins per feature.More generally, the NB regressions
followed the model formula sgRNA raw counts ~ feature*TP53-status +
D2 + offset, and were run using the glm.nb function from the MASS R
package. The categorical variables had the default ‘dummy’ contrast
when these were unordered, and orthogonal polynomial contrast
(linear) when ordered. The offset was the natural logarithmof the total
sum of non-targeting sgRNA counts per sample. In the case of the
regressions using the isogenic pair (both TP53 status) we reported the
estimates (regression coefficients) for the interaction between each
feature (in general, presence vs. absence) and TP53 status (wild-type
versus knockout), while in the other set of regressions we only inclu-
ded TP53wt samples (model formula: TP53wt sgRNA raw counts ~
feature + D2 + offset) and reported the estimates for each feature
per se. In each of these cases, we first regressed each feature (inter-
acting or not with TP53) separately, and then repeated the regression
including each one of the remaining features (again, interacting or not
with TP53) in a pairwise manner. We also ran two NB regressions
including only either the TP53 status or D2 as explanatory variables, to
capture the effect in toxicity of these features alone (model formulae:
sgRNA raw counts ~ TP53-status + D2 + offset or sgRNA raw counts ~
D2 + offset). FDR values were calculated using the qvalue function
from the qvalue R package. To represent the abundance of a feature
surrounding the DSB position of the top 200 target loci (larger nega-
tive LFC) and top 200non-selected loci (mean LFC closer to 0), weplot
the ChipSeq fold-enrichment ratio (Fig. 2c) or -log10 Poisson p-value
(Supplementary Fig. 6d), averaged at each 400bp-bin position relative
to the sgRNA cut position.

Correspondence of p53-related DSB toxicity between copy-
number and other chromatin features
One could use the known toxic effects of Cas9 DSBs at copy-number
(CN) amplified loci to calibrate a unit of measurement for DSB toxicity
due to various effects (e.g., chromatin states). The two levels of the CN
(categorical) variable included in our regression analyses result from
the binarization of the CNVkit score obtained for the A549 cell line
exome (see the previous paragraph). In brief, this CN score represents
the multiple of the variation from the overall ploidy, so that a CN
score = 1 implies no local variation from the global ploidy. The mean
CN score per level of the categorical variable was 0.7 (reference level)
and 2.0 (high CN), respectively. Thus the regression coefficient
beta = −0.0396 for CN could be interpreted broadly as a 2.9-fold
increase in ploidy at a target locus resulting in an exp(−0.0396) = 0.96-
fold decrease in sgRNAcounts (note: 2.9 equals the ratioof 2.0 and0.7,
which are the CNs for the two levels of our categorical CN variable).
Applying the simple rule-of-three (cross-multiplication), we infer that

Article https://doi.org/10.1038/s41467-022-32285-1

Nature Communications |         (2022) 13:4520 10



targeting a genomic regionmarked byH3K79me2 incurs a toxicity that
corresponds to targeting a locus with a ~2.0-fold increased ploidy. In
the same manner, targeting a genomic region marked by either
H3K36me3 or DHS would be analogous to targeting a region with an
extra 1.2- or 2.8-fold ploidy, respectively.

DNA sequence motifs enrichment near high-p53-toxicity sgRNA
target sites
We ran three independent HOMER75 analyses, one for each search
length considered (16, 50, and 100 bp), centered on the DSB position.
We used the hypergeometric test to find motifs between 2 and 25 bp
long that were enriched in the set of target loci compared to the
background loci (same sets as in previous analyses). NB regressions
were performed in the samemanner as in the previous point, including
as explanatory variable the abundance versus absence of each motif
with a HOMER p <1e-5. We also included motifs that were similar or
overlapped with the latter, using as threshold a HOMER similarity
score >0.6, and that were likewise enriched in target loci (HOMER p
<1e-5); we referred to each group of similar motifs as a motif cluster.
Regarding the abundance of a motif cluster in a locus, we only con-
sideredmotif clusters represented once in at least 10% of all target and
background loci, and only considered up to five instances of a given
motif cluster in a locus.Motif clusters shown in Fig. 2d, e are those that
passbothfilters for significanceand consistency: (1) the estimateof the
interaction between the effect of a motif cluster and TP53 has an
FDR <0.25 (Benjamini–Hochberg method), unless indicated by a red
cross; and (2) the estimate sign is matched in the effect of the motif
alone in the TP53wt-only analyses, for at least one pseudo-replicate.
The plotMotifOccurrenceAverage function from the seqPattern R
package was employed —with all defaults— to estimate the relative
frequency of each motif (contained in the significant motif clusters)
between the target and background loci; this analysiswas based on the
HOMER-inferred position weight matrices of the motifs. Motifs inclu-
ded in the motif cluster 1 that are not plotted in Fig. 2e (nor in Sup-
plementary Fig. 8b) due to the difficulty or inability of seqPattern to
find them, possibly because of their complexity, are BBCCCCCG
KDGWKKTK, CCDCCMCYGWTGWNDTY, CCMCHCHCGGGGGVC, KYC
CYCGGHTKWYTB, NHCCHCMVNGGGGG, TCNCCACTGTKNDSWM,
and YCHCCTCCGTGDDGT. The analysis that identified the most p53-
toxic PAM sequence context is described in section Association of
active chromatin with high-p53-toxicity sgRNA target site above.

Role of HR versus NHEJ repair pathway in Cas9 DSB toxicity
across chromatin states
We employed the raw sgRNA count data from the project Achilles27

(21Q2). We computed the log2 fold sgRNA counts averaged across the
replicates of each cell line.We classified the 856 cell lines as eitherwild-
type or mutated for TP53 and HR pathways. We applied the algorithm
detailed in section TP53wt-conditionally essential genes above, with the
differences that for HR we considered that if any of the main genes of
the pathway, this is, BRCA1, BRCA2, PALB2, and RAD51C, had a patho-
genic mutation, or BRCA1 contained a deletion76, the HR repair path-
way would be deficient. Also, a cell line was considered HRmut if it
bears a rare missense variant with a CADD> 15 annotated with
Annovar77, and/or the cell line is classified asmutant for any of the four
genes by a cancer functional event (CFE)76. In addition, only tissues
considered to be typically BRCA-deficient were considered78; namely
breast, ovary, pancreas, and prostate, leaving 124 cell lines for all the
analyses. See Supplementary Dataset 1 for the mutation status
assigned to each cell line. We employed gdsctools as detailed in sec-
tion TP53 wild-type background confounds estimates of gene selection
above. Specifically, we compared gene essentiality, measured as the
relative sgRNA log2 fold counts, between TP53wt and TP53mut cell
lines. Thefilter applied to identify sgRNAs that potentially triggermore
p53 toxicity (target loci) was to have aworse effect onfitness in TP53wt

cell lines, defined as a gdstools ANOVA effect size < −0.4; Supplemen-
tary Fig. 12 shows some examples of how this filter was applied. From
the 5,382 sgRNAs that passed this filter, we removed 1384 based on
criteria detailed in section sgRNA-level analyses of cut toxicity reveal
genomic and epigenomic determinants above. A control set of low p53
toxicity loci was ascertained by setting a threshold of −0.04 < effect
size < 0.04. To run the NB regressions, we employed 3,294 target and
6,316 low p53 toxicity loci. Themodel formulae applied were (i) sgRNA
raw counts ~ TP53-status * HR-status + D2 + tissue + offset and (ii)
sgRNA raw counts ~ feature * HR-status + D2 + tissue + offset. In (i), two
independent regressions were run: one employing target loci, and
another employing the loci with low p53 toxicity. In (ii), 56,855 sgRNAs
(all the available ones from Avana library) were included. The chro-
matin featuremaps employed are similar to those detailed above, and
based on the pooling of several cell lines45, including DHS, H3K9ac,
H3K27ac, H3K4me3, H4K20me1, H2A.Z, H3K79me2, H3K36me3,
H3K9me3, H3K27me3, CTCFmotifs, replication time, gene expression
levels, Lamin B1 association, CpG content, gene length, and sgRNA
positioning with respect to 5′ versus 3′ gene ends. In both models, cell
line tissue information was included as a correcting variable, with
breast as reference level. The offset was based on the total read counts
of 378 known non-essential genes23.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In this study published datasets were reanalyzed. We used the
CRISPR screening data from a recent publication from our lab60. We
also employed publicly available data as described in theMethods: In
brief, we used pan-cancer essentiality data from Achilles and PScore
projects27–29, and gene essentiality information from the DEMETER2
project48, available through DepMap repository [https://www.
depmap.org]; CRISPR screening data of TP53-isogenic cell lines
were obtained from previous publications17,19 and from Taipale lab. A
list of top-50 TP53 interacting genes was obtained from STRING
[https://string-db.org/]; Chromatin mark and DNase ChipSeq data
was obtained from RoadMap Epigenomics Consortium [http://www.
roadmapepigenomics.org/]; Copy number data was obtained from a
recent publication from our lab71; Gene expression levels were
obtained from a recent publication from our lab72; Replication time,
CTCF and Cohesin motifs data was obtained from a previous
publication45; Lamin B1 data was obtained from genome.ucsc.edu;
Allele frequency data was obtained from gnomAD63; CFE (GDSC1)
data was obtained from a previous publication76; Mutation data for
MSK cohorts from the project GENIE66 v10.1 was obtained from
cBioPortal [https://www.cbioportal.org/]; A list of validated ATRi-
sensitizers was obtained from a previous publication21; Lists of core-
essential23 and non-essential11 genes were obtained from previous
publications. Raw sgRNA read count data generated in our lab and
used in this study have been deposited in the Figshare database
[https://doi.org/10.6084/m9.figshare.20326587.v1], while CRISPR
data from other labs is available via the references cited. Source data
are provided with this paper.

Code availability
Custom code available in a github repository https://github.com/
mmaalvarez/code_natcom_2022/tree/Alvarez_etal_2022_NatCom and
Zenodo https://doi.org/10.5281/zenodo.685105279.
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