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Abstract 

Genome editing techniques, especially the CRISPR/Cas technology, increase the possibilities and the speed of altering 
genetic material in organisms. So-called genome editing is increasingly being used to achieve agriculturally relevant 
novel traits and/or genetic combinations in both plants and animals, although predominantly as proof of concept 
studies, with commercial growing or rearing so far limited to the U.S. and Canada. However, there are numerous 
reports of unintended effects such as off-target effects, unintended on-target effects and other unintended conse-
quences arising from genome editing, summarised under the term genomic irregularities. Despite this, the search-
ing for genomic irregularities is far from routine in these studies and protocols vary widely, particularly for off-target 
effects, leading to differences in the efficacy of detection of off-target effects. Here, we describe the range of spe-
cific unintended effects associated with genome editing. We examine the considerable possibilities to change the 
genome of plants and animals with SDN-1 and SDN-2 genome editing (i.e. without the insertion of genes conferring 
the novel trait) and show that genome editing techniques are able to produce a broad spectrum of novel traits that, 
thus far, were not possible to be obtained using conventional breeding techniques. We consider that the current EU 
risk assessment guidance for GMOs requires revision and broadening to capture all potential genomic irregularities 
arising from genome editing and suggest additional tools to assist the risk assessment of genome-edited plants and 
animals for the environment and food/animal feed in the EU.
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Background
Genetically modified organisms (GMOs), predominantly 
plants, have been commercially grown in some countries, 
notably the Americas, since the mid-1990s [1]. Almost all 
current commercial GMOs have been developed using 
what is termed here as ‘first generation’ genetic engineer-
ing technology. That is, these GMOs contain recombi-
nant DNA where a DNA cassette containing a functional 
gene or genes, relating to a novel trait, is inserted at 
random into the genome of the recipient organism [2]. 

Examples include GM herbicide-tolerant ‘Roundup 
Ready’ soy and GM insect-resistant Bt maize [1]. Within 
the last decade, agriculturally orientated applications 
of newer, second-generation genetic engineering tech-
nologies have been developed, in particular so-called 
genome editing technologies [3, 4]. There is some con-
troversy over the terminology used to describe these 
techniques. Genome editing is often called “gene edit-
ing”, but this would not include the alterations of multiple 
genes or regulatory genomic elements like enhancers or 
noncoding RNAs, as is possible with these techniques. 
Objections have been raised to the term “editing”, lik-
ening genome editing to a precise and predictable text 
editor, when in fact there is limited knowledge of the 
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consequences of such interventions [5, 6]. Genome edit-
ing has also been termed “genome engineering”, implying 
greater intervention to the genome than simply “edit-
ing” [7], and are referred to “new genomic techniques” 
by the European Commission [8]. In this paper, we use 
the terminology of genome editing to encompass tech-
niques such as oligonucleotide-directed mutagenesis 
(ODM), zinc finger nucleases (ZFNs), transcription acti-
vator-like effector nucleases (TALENs), meganucleases 
and clustered regularly interspaced short palindromic 
repeats/CRISPR-associated (CRISPR/Cas) techniques 
[9–12] with CRISPR/Cas becoming the most widely used 
genome editing technology [13].

All genetic engineering technologies, whether first 
or second generation, aim to directly modify genomes. 
That is, to change the genetic material (usually not only 
genomic DNA, but also potentially RNA and the epi-
genome) of an organism directly, without mating, by 
introducing either genetic material or material that 
enacts a change to genetic material into the cell. The 
material introduced into the cell is produced, or at least 
handled, in the laboratory by humans, i.e. in vitro tech-
niques. This concept of direct modification of genomic 
material underlies the concept and definition of both a 
GMO in the EU (EU Directive No 2001/18/EC, [14]) and 
a living modified organism in the Cartagena Protocol on 
Biosafety [15].

Concerns regarding the potential negative impacts of 
GMOs to the environment from cultivation, and to ani-
mal and human consumers, have led to the requirement 
of a risk assessment for GMOs prior to cultivation and 
marketing in the EU under EU Directive No 2001/18/
EC [14] and many other regions and countries around 
the world. One fundamental concern regarding GMOs 
is that direct modification of genetic material by genetic 
engineering technologies can unintentionally interfere 
with the well-orchestrated expression of genes or with 
the complex biochemical pathways operating within an 
organism. For example, genomic irregularities caused 
by recombinant DNA have given rise to unintended 
RNA variants [16] or altered secondary metabolites [17]. 
Hence, the biological and biochemical characteristics of 
the GMO might be changed in a way that impacts con-
sumers and/or the environment. In addition, the novel 
trait conferred by the genetic engineering, e.g. herbicide 
tolerance in plants, is also of concern as this can have 
consequences for agricultural systems, the environ-
ment and often for food and animal feed safety [18, 19]. 
Further, in the EU, a system of traceability and labelling 
is necessary to allow for segregation of GM foods from 
non-GM foods to enable consumer choice and monitor-
ing of any adverse effects in the human population post-
marketing of GMOs.

In the EU, genome-edited organisms are required to 
undergo both environmental and food and feed risk 
assessments, as is required of first-generation GMOs 
[20]. Risk assessment guidelines for GM plants and ani-
mals have been developed by the European Food Safety 
Authority (EFSA) for the environment [21, 22] and food 
and feed [23–25] within the framework of European reg-
ulations. However, genome editing techniques are sub-
stantially different to first-generation genetic engineering 
techniques. Therefore, risk assessment guidelines will 
have to be examined, and potentially revised to ensure 
they capture unintended effects caused by the genome 
editing process. EFSA has issued an opinion on the risk 
assessment for the genome editing of plants where genes 
are inserted using site directed nuclease-3 (SDN-3) tech-
niques [26] and has received a mandate from the Com-
mission to produce an opinion on whether these risks are 
applicable to genome-edited plants not carrying novel 
genes, i.e. using site-directed nuclease-1 (SDN-1) and 
site-directed nuclease-2 techniques (SDN-2). The scien-
tific opinion is expected by the end of 2020 [27]. There is, 
as yet, no mandate for EFSA to devise guidelines specifi-
cally for the risk assessment of genome-edited animals.

Here, we give an overview of genome editing tech-
niques and describe the specific unintended effects 
related to their application in plants and animals. We give 
examples of market-orientated applications of genome 
editing in agriculture and provide evidence that genome 
editing can give rise to organisms with traits that differ 
significantly from existing traits developed by conven-
tional breeding and first-generation GMOs. Finally, we 
examine considerations for the risk assessment of GMOs 
developed using genome editing in the EU.

Technical characterisation of new genetic engineering 
techniques
Genome editing techniques
Genome editing is the collective term for numer-
ous new genetic engineering techniques. Most (e.g. 
ZFN, TALEN, CRISPR/Cas9) comprise site-directed 
nucleases (SDNs), which induce double-strand breaks 
(DSBs) of the DNA at specific, predefined target sites. 
This subsequently activates the cell’s own repair mecha-
nisms and alterations of the DNA sequence can occur. 
Other techniques, that are based on the CRISPR/Cas 
system, include those that induce a break in only one 
DNA strand to increase specificity and those that can 
induce changes in RNA or the epigenome [28, 29]. 
ODM does not use SDNs, but is directed by short syn-
thetic oligonucleotides which are introduced into plant 
cells where they mediate directed sequence changes 
at specific, predefined genomic loci and are supposed 
to be degraded by cellular processes [12, 30]. Genome 
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editing can be applied to plants, animals and microor-
ganisms [9] and also humans, e.g. for therapeutic use, 
although human applications are outside the scope of 
this review and not considered GMOs by the EU legis-
lation under EU Directive No 2001/18/EC [14].

ZFNs and TALENs are protein-based systems that use 
engineered proteins to both recognise the DNA target 
sequence and induce a DNA DSB by a nuclease domain 
(e.g. FokI) at a predefined site in the genome of a target 
organism. These techniques have been largely outcom-
peted by the CRISPR/Cas system in recent years [13]. 
Nevertheless, some products developed by these ear-
lier techniques are permitted to be cultivated and sold, 
at least in the U.S. [31], e.g. soybeans with altered fatty 
acid content developed by the company Calyxt [32], and 
it is possible that more products from these earlier tech-
niques could enter the market in the future. The focus 
of this review is on CRISPR/Cas systems, of which only 
brief technical details are given, but are discussed in-
depth elsewhere [33–35]. In short, CRISPR/Cas allows 
the targeting of an endonuclease (e.g. Cas9 from Strep-
tococcus pyogenes) to specific genomic regions using 
a guide RNA (gRNA) [10, 11]. The gRNA is designed 
according to the genomic locus/loci that are to be 
altered. Cas9 interacts with the gRNA and upon recog-
nition of the target sequence introduces a DNA DSB at 
that part of the genome [36]. DNA DSBs subsequently 
activate the cell’s non-homologous end joining (NHEJ) 
repair and homology-directed repair (HDR) mechanisms 
[37–40]. The NHEJ pathway is known to be error prone 
and frequently results in base substitutions, insertions 
or deletions (indels) at the DNA break sites [41]. These 
alterations can generate frameshift mutations or disrupt 
important functional domains, which can, for example, 
disrupt the functioning of target genes [42]. Kinetics and 
fidelity studies show that, as the cell attempts repair of 
the DNA double-strand break to its original structure, 
the application of the nuclease will typically result in 
a cell or an organisms in which the target site is altered 
[43]. For this reason, NHEJ repair is pursued for gene 
knockout applications. The HDR pathway utilises exoge-
nous DNA donor templates to introduce nucleotide sub-
stitutions and DNA insertions at the target sites [44, 45]. 
Genome editing applications using SDNs can be used to 
either introduce small-sized, undirected changes (SDN-
1) or directed sequence changes (SDN-2 and SDN-3) at 
specific, predefined genomic loci [46]. SDN-3 approaches 
involve the insertion of transgenic constructs at spe-
cific, predefined locations (including gene-stacking) [47]. 
Changes at multiple locations of the genome are possi-
ble using multiplexing approaches, which target several 
genes at once, or repeated applications using multiple 
gRNAs [34, 48, 49].

The most commonly used CRISPR/Cas endonuclease 
is Cas9 but others, e.g. CRISPR/Cpf1 (or Cas12a), have 
been used as well [48, 50, 51]. A catalytically inactive 
Cas9 variant (dead Cas9 or dCas9) has been developed 
and fused to different functional domains for various 
applications [52] such as base editing [53], editing of epi-
genetic modifications [54, 55], or transcriptional silenc-
ing [52, 56].

In base editing, dCas9 is coupled to enzymes that sub-
sequently lead to the irreversible conversion of a specific 
DNA base into another without requiring DNA DSBs at 
the target sequence [53, 57]. Base editing has been the 
subject of several proof of concept studies in plants [58, 
59] and animals [60, 61]. So far, base editing can generate 
only the four transition mutations (C-T, G-A, A-G and 
T-C) [53, 57], but it is still not possible to perform the 
eight transversion mutations (C-A, C-G, G-C, G-T, A-C, 
A-T, T-A and T-G) because pyrimidines and purines have 
totally different molecular structures.

Dead Cas9 can also be coupled to epigenetic modifiers 
such as DNA methyltransferases or histone acetylases to 
introduce changes in the epigenome of a target cell [29]. 
The epigenome is shaped through biochemical modifica-
tions of the DNA sequence itself (e.g. DNA methylation 
or demethylation) or associated histones (e.g. acetylation, 
methylation or phosphorylation) [54, 62, 63]. The epig-
enome regulates in a well-orchestrated manner the gene 
expression in all tissues and is indispensable for normal 
development and function of an organism [64, 65].

Further Cas variants are at the proof of concept 
stage. Recently, ‘prime’ editing was described in human 
cells, [66] rice and wheat [67–69]. This development of 
CRISPR/Cas technology allows the introduction of tar-
geted insertions, deletions as well as all possible base-
to-base conversions changes in DNA. Essentially, prime 
editing uses a modified Cas9 that introduces a single-
strand break at the target site of the genome and is con-
nected to a reverse transcriptase. A determined prime 
editing RNA (pegRNA) both specifies the target site of 
the DNA and encodes the desired template which is con-
verted to DNA by the reverse transcriptase. Prime editing 
is intended to increase the efficiency to generate targeted 
DNA edits compared to DNA DSB-mediated HDR and 
to decrease off-target effects in comparison to the classi-
cal CRISPR/Cas9 system. Off-target effects are intended 
to be reduced as prime editing only nicks one DNA 
strand thereby not activating the error-prone NHEJ.

LwaCas13a from Leptotrichia wadei has been described 
and adopted for editing of RNA [70, 71]. Cas13a is struc-
turally different to Cas9 and can be used to cleave specific 
mRNAs. Analogous to CRISPR/Cas9 approaches, Cas13 
is recruited to a target mRNA using a crRNA (CRISPR 
RNA), leading to the binding and cutting thereof [70]. 
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Cas13a has been used for a targeted knockdown of 
endogenous transcripts in rice protoplasts with com-
parable levels of knockdown as RNA interference [70]. 
Finally, an enzymatically inactive form of Cas13 (dead 
Cas13, dCas13) has also been developed for RNA edit-
ing via a linked adenosine deaminase acting on RNA 2 
(ADAR2) [72], which enables the editing of bases at the 
target sequence of the respective mRNA without altering 
the underlying DNA sequences. At present, the extent 
to which these newer forms of genome editing give rise 
to genomic irregularities is not known as the relevant 
research has yet to be conducted.

First‑generation genetic engineering techniques used 
for genome editing of plants
First-generation genetic engineering techniques are still 
commonly used to introduce CRISPR/Cas components 
into plant cells. The components can be delivered in form 
of DNA, RNA or ribonucleoproteins (RNPs) via Agro-
bacterium-mediated DNA transformation, particle bom-
bardment or by protoplast transfection into the recipient 
cells. If plasmids are used to deliver the CRISPR/Cas rea-
gents into the cells for stable expression, either Agrobac-
terium tumefaciens or particle bombardment is used and 
transformed cells are selected using marker genes such 
as antibiotic resistance. The transgenes containing the 
CRISPR/Cas components are inserted at random sites of 
the genome, potentially inducing genomic irregularities 
upon integration, and can be removed subsequently by 
segregation using conventional breeding.

Transient gene expression of CRISPR/Cas can be 
achieved without transgene integration by introducing 
a plasmid that encodes the CRISPR/Cas components in 
plant cells without selectable marker genes. One aim of 
this delivery technique is to reduce genomic irregulari-
ties created by the insertion of transgenes. Dupont Pio-
neer’s genome-edited waxy maize is an example of this 
approach [73]. However, there is potential for the intro-
duced plasmid or template DNA (or fragments thereof ) 
to unintentionally integrate into the genome of the host 
[73–77].

DNA-free CRISPR/Cas delivery has been developed 
using pre-assembled RNPs in plants mostly by particle 
bombardment or protoplast transfection [78–80]. The 
RNPs can cleave the target region immediately upon 
delivery in the nucleus and are then degraded quickly, so 
fewer off-target effects are to be expected [33]. Neverthe-
less, increasing specificity using RNPs thereby restrict-
ing its mode-of-action to a confined time also leads to a 
reduction in on-target cleavage. Thus, a balance between 
on-target cleavage efficiency and off-target effects has 
to be considered [81]. Proof of concept examples of 

CRISPR/Cas genome editing using RNPs include apple, 
grape, maize and wheat [74, 75, 79].

Regeneration of whole plants from protoplasts is still 
challenging for most agronomically important crops. 
Protoplasts are single cells enzymatically isolated from 
plant tissue, which can form a new plant. A major chal-
lenge still is the isolation of intact protoplasts from tis-
sue material [82]. Another challenge occurring during 
regeneration of whole plants from protoplasts is genomic 
instability (i.e. chromosomal and segmental instability), 
e.g. in potatoes [83].

Genetic engineering techniques for genome editing in farm 
animals
The methodology for genetic engineering of farm animals 
is very different from plants because plants can regener-
ate from somatic cells, whereas animals can only develop 
from germline cells. The use of embryos raises ethical 
and welfare issues especially in vertebrates, as hundreds 
of genetic transformations, each requiring an embryo, are 
made in a typical genetic engineering (including genome 
editing) experiment [84, 85]. Transformed embryos with 
the desired modification and no apparent undesirable 
modifications are selected for impregnation, but further 
embryos are lost during impregnation and pregnancy [84, 
85]. Thus, a considerably high number of embryos are 
needed for the genetical engineering of animals, which 
is ethically questionable. The methods of DNA intro-
duction and regeneration in vertebrates are the same for 
both first-generation genetic engineering and genome 
editing. The two principal methods to generate geneti-
cally engineered animals are somatic cell nuclear transfer 
(cloning) and cytoplasmic injection (pronuclear injec-
tion or microinjection) [86, 87]. With cloning, primary 
cells from an adult animal (e.g. fibroblasts) are grown 
in cell culture and transfected (e.g. viral transfection or 
electroporation) with CRISPR/Cas components. After 
selection of the desired DNA alterations, the genome-
edited somatic cell is fused with an enucleated egg cell 
to create a viable, genome-edited embryo. In contrast, 
microinjection involves direct injection of the genome 
editing complex into the cytoplasm of a zygote. However, 
microinjection has reportedly low editing efficiencies and 
commonly results in mosaicism (a mixture of edited and 
unedited alleles) [88]. Because of the difficulties involved 
with the microinjection, cloning methods are still widely 
used in the genome editing process for animals [86, 87]. 
Cloning commonly leads to birth defects, abortions and 
early postnatal death [86]. Therefore, particularly for ver-
tebrate animals, genome editing experiments carry ethi-
cal and welfare issues.
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Unintended effects associated with genome editing
Although genome editing techniques are often described 
as being precise in terms of intended changes to genetic 
material [89–92], genomic irregularities including unin-
tended off-target effects (OTEs), on-target effects and 
chromosomal rearrangements have been reported [93, 
94]. Unintended effects can occur with all genome edit-
ing techniques, but CRISPR/Cas systems are the most 
frequently genome editing tool used in studies. Thus, our 
focus is primarily on unintended effects associated with 
this technique.

Off‑target effects of CRISPR/Cas applications
Off-target effects are the cleavage of, and subsequent 
change to, DNA at genomic sites other than the tar-
get site. Off-target effects are one of the major concerns 
regarding unintended effects generated by CRISPR/Cas 
systems [3, 84, 95]. Off-target effects have been demon-
strated in several crop plants, including rice, soy, maize 
and barley [93, 95–99] and in farm animals such as pigs 
[100], as well as in rats and mice [101, 102]. Off-target 
effects occur at DNA sequences with even 3–5 base pair 
mismatches in the protospacer adjacent motif (PAM)-
distal part of the gRNA, as there is a degree of tolerance 
for mismatches between the target DNA and the guide 
RNA [95, 103–105]. Some types of gRNA have a high 
degree of specificity, whilst some are more promiscuous 
[95]. Thus, a reliably accurate design of gRNAs, based on 
pre-existing genomic data, can minimise, but not nec-
essarily eliminate, the possibility of off-target effects. In 
addition, the nature of the genome editing components 
(i.e. whether RNPs or plasmids are used), the target 
organism (meaning the complexity of its genome), the 
duration of exposure to the nuclease, pharmacokinet-
ics of the delivered components, the type of Cas variant 
used and the amount of nuclease applied can all affect the 
specificity and the number of off-target events [103, 106–
108]. Should off-target effects occur in protein coding 
genes, loss-of-function mutations or alterations of pro-
tein functions could result. Similarly, unintended altera-
tions in non-coding DNA sequences, promoters, introns, 
terminators or insulators could alter gene expression. 
Therefore, the detection of off-target effects is an essen-
tial step in determining the safety of a genome-edited 
organism for the environment, food and feed.

Attempts are being made to make the CRISPR/Cas 
system less prone to off-target effects, e.g. it appears 
the CRISPR–Cpf1 system has a higher specificity than 
CRISPR/Cas9, which also increases the possibilities to 
target more genes [109, 110]. The composition of nucleo-
tides around the PAM-sequence, the GC content of the 
gRNA and chromatin structure of the target sequence 
also have an influence in off-target activity [111, 112]. 

Interestingly, it has been suggested that the outcome of 
the plant repair process is also influenced by the local 
sequence properties at the target site [113, 114].

Whilst ODM may involve changes to only small num-
ber of DNA bases, there is the possibility of off- and on-
target effects. Although there are, as yet, no published 
data examining the frequency of unintended effects with 
ODM [4, 13, 93], this does not mean that they do not 
occur. The possibility of oligonucleotide integration can-
not be excluded [4].

Off‑target effects associated with base and epigenetic editing
Base editors induce lower levels of unintended inser-
tions and deletions when compared to SDN applications 
that induce DSBs [53, 115], but they have the potential 
to change all target nucleotides within an editing window 
of five base pairs [53]. Recent findings show an increased 
occurrence of off-target mutations using cytosine base 
editors (CBEs) compared to adenine base editors (ABEs) 
in rice and mouse embryos [116, 117]. Surprisingly, the 
off-target mutations, induced by CBEs, occurred pre-
dominantly in actively transcribed genic regions that 
were not depicted by in silico prediction tools [117].

Base editors can also generate transcriptome-wide off-
target editing of RNA in addition to DNA editing [118]. 
These effects were found both in CBEs and ABEs and 
occurred independently of both the guide RNA used and 
off-target DNA editing. This demonstrates that off-target 
effects induced by base editors are multi-dimensional 
and illustrate the importance of a detailed assessment 
of off-target effects, not only of DNA, but also RNA in 
such organisms, especially if the DNA encoding the base 
editors is integrated into the genome. These off-target 
effects can result in missense (i.e. substitution of a dif-
ferent amino acid in the resulting protein) or nonsense 
mutations (i.e. generating a truncated protein by generat-
ing a stop codon) potentially generating an altered pro-
tein composition or generation of splice variants [118]. In 
an attempt to reduce unwanted effects and improve pos-
sible future applications, these systems are being further 
revised [119, 120].

Epigenome editing can induce unspecific genome-wide 
changes in the epigenome [121], which could lead to an 
altered gene expression in these cells. It also appears that, 
so far, the specificity of these dCas9-epigenetic modifiers 
cannot be reliably predicted [122].

Unintended on‑target effects associated with CRISPR/Cas 
applications
In addition to off-target effects, unintended alterations 
either at, or in close proximity to, the target site, have 
been observed [94, 123–125]. We use the term ‘unin-
tended on-target effects’ to describe these unintended 
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alterations in the vicinity of the target site although these 
molecular changes can also occur further away, even dis-
tant from the target site. Large chromosomal deletions, 
insertions and inversions have been detected after apply-
ing CRISPR/Cas9 in mouse embryonic stem cells and 
differentiated human cells [94]. Such complex chromo-
somal rearrangements can be identified using long-range 
PCR or long-read next-generation sequencing platforms, 
such as the Pacific BioSciences or Oxford Nanopore 
Technology. However, these techniques are rarely used 
for routine genotyping of CRISPR/Cas-induced muta-
tions in plants, so these on-target effects are likely to 
have remained undetected in many studies [126]. Small 
insertions or deletions at the target site can cause disrup-
tion of the alternative splicing mechanism, resulting in 
exon skipping by disruption of exon splicing enhancers 
[123, 127]. This misreading of DNA has the potential to 
produce aberrant proteins, confirmed by the detection 
of an aberrant protein resulting from the application of 
CRISPR/Cas9 to a human cell culture [127]. Alternative 
splicing occurs in all multicellular animals and plants, 
but to a greater extent in animals than plants [128]. 
This suggests that any disruption to alternative splic-
ing could have a greater effect in animals compared to 
plants. Downstream effects from alternative splicing 
may remain undetected unless transcriptomic or prot-
eomic techniques are applied to identify aberrantly gen-
erated mRNAs and proteins. In addition, large deletions 
induced by a single gRNA were found to delete whole 
exons causing exon skipping in cell lines [124, 129].

Both HDR and NHEJ-mediated repair have been shown 
to cause multiple unwanted head-to-tail insertions of 
DNA donor templates at the target site during the gen-
eration of conditional knockout mice models [130]. Con-
ventionally applied PCR analysis failed to identify these 
insertions. Thus, it is essential to validate the integrity 
of the target DNA regions after applying CRISPR/Cas9 
using a combination of suitably sensitive analytical tech-
niques such as qPCR, digital droplet PCR and southern 
blotting [130].

The multifunctionality of genes, particularly in animals 
by virtue of the greater extent of alternative splicing, can 
result in unintended consequences from genome editing. 
A gene that is rendered dysfunctional (knocked out) by 
an intended small deletion, or even base edit, may have 
products that perform an essential function elsewhere in 
the cell [131]. This could cause errors in cell metabolism, 
including protein production. Understanding the impli-
cations of some of the consequences of genome edit-
ing will require further research, especially as many of 
the studies examining on-target effects use cell cultures, 
including human and animal cells. For example, applying 
CRISPR/Cas9 in human pluripotent stem cells and retinal 

pigment epithelial cells was shown to result in the accu-
mulation of mutations in the p53 gene. These cells were 
exposed to a selection against functional p53 [132, 133] 
which could lead to a subsequent increased accumulation 
of mutations. Further research is needed to determine 
how relevant this effect might be to market-orientated 
agricultural applications of CRISPR/Cas, particularly 
CRISPR/Cas9-induced mutations in plants SOG1 which 
has similar functions as p53 in animals [134].

Unintended integration of CRISPR/Cas components 
or plasmid DNA
When CRISPR/Cas components are delivered as plas-
mids into the cells, both unintended additional inte-
gration events of this DNA or its fragments have been 
reported in both plants and animals, and where the plas-
mid was intended to enact genome editing without any 
DNA integration, unintentionally integrated [74, 76, 130, 
135]. This can refer to the CRISPR/Cas components as 
well as the plasmid backbone. For example, in one study, 
the DNA template encoding CRISPR/Cas9 was not only 
detected at the target location in soybeans as intended, 
but also at other multiple, apparently random, genomic 
locations [135]. In another study, CRISPR/Cas sequences 
were found at multiple genomic sites showing microho-
mology at the transgene integration sites indicating that 
the integration of CRISPR/Cas sequences might not be 
completely random [136].

Unintentional integration of CRISPR/Cas-encoding 
DNA fragments in the genome of other plants has also 
been reported [74]. Unintended plasmid integration into 
the genome was discovered by whole genome sequenc-
ing (WGS) [76] in livestock when TALENs were used to 
insert an allele of the POLLED gene in bovine embry-
onic fibroblast to ultimately generate hornless dairy cat-
tle [137]. However, the developers initially did not detect 
the unintended plasmid integration in their own analysis, 
possibly because either the plasmid backbone was not 
included in the sequence alignment, elevated noise at the 
target locus, limited signal of the sequencing data, and/
or PCR conditions insensitive to detect the integrations 
[76, 77].

Unintended effects induced by applying first‑generation 
genetic engineering techniques
Whilst the actual genome editing allows modifying the 
DNA at a target site, this claimed precision may not hold 
true for the delivery and integration of its tools. The use 
of first-generation genetic engineering techniques to 
integrate DNA encoding the CRISPR/Cas components 
results in insertion at a random location in the genome, 
often with multiple and flawed (e.g. partial) copies [138, 
139]. Random integration of the transfer DNA (T-DNA) 
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from Agrobacterium-mediated plant transformations 
(and fragments thereof ) could have unwanted conse-
quences for the resultant GMO, such as the disruption of 
genes important for plant growth or development. Alter-
natively, T-DNA can integrate into regions of the genome 
that are poorly or unstably expressed when cultivated in 
the field. For example, integration of T-DNA fragments 
can cause the formation of unintended mRNA variants 
[16]. The findings of Jupe et al. [141] highlight the need 
to search for irregularities in both the genome and epig-
enome, particularly in regions flanking integration sites, 
of GMOs that were transformed by Agrobacterium tume-
faciens. Plants transformed by direct delivery methods 
such as particle bombardment show genomic DNA rear-
rangements as well as rearrangements of the transgenic 
loci [140].

The insertion of genetic material can give rise to 
genomic irregularities, including large genomic rear-
rangements, deletions, insertions, genome-wide muta-
tions and epigenetic alterations in the vicinity of the 
integration site [139, 141–144].

Once inserted CRISPR/Cas components have enacted 
a change in the organism’s genomic material (usually 
DNA), their transgenes can be removed from plants  by 
backcrossing with parental lines. As a result, in theory 
at least, the resultant organisms from SDN-1 and SDN-2 
applications of genome editing do not contain any 
inserted genes, but it is important to verify the complete 
absence of inserted genes including vector backbone 
sequences [13, 145].

Potential applications of genome editing in agriculture
Genome‑edited crops that contain novel genomic 
combinations
Many plant species have complex genomes exhibiting 
considerable diversity in both size and structure [146]. 
Challenges to plant breeding include polyploidy, a large 
number of orthologous genes, heterozygosity, repeti-
tive DNA and linkage drag. Major agricultural relevant 
crops like rapeseed, wheat, potato, cotton, apple and sug-
arcane are polyploid, i.e. combine more than two paired 
sets of chromosomes, which either originate from the 
same (autopolyploids) or related species (allopolyploids) 
[147]. For example, oilseed rape (Brassica napus) is allo-
tetraploid as it consists of two different diploid sets of 
chromosomes, one from B. oleracea and one from B. 
rapa [148]. In addition, plant genomes often contain 
highly repetitive genomic regions due to transposable 
elements exhibiting large genome sizes. For example, the 
genome of allohexaploid wheat consists of approximately 
14.5 × 109 bases, composed of three closely related sub-
genomes, each of which contains a set of homologous 
genes [149].

The complexity of plant genomes poses a serious chal-
lenge for generating genetic alterations that require the 
targeting of multiple genes by traditional breeding and 
mutagenesis techniques that use chemicals or radia-
tion to introduce mutations in plants [150]. Strategies 
to overcome limits of conventional breeding have been 
developed using genome editing. Genome editing tech-
niques such as CRISPR/Cas enable complex alterations 
of genomes in a way that, until now, was not possible 
[151]. Multiplexing approaches, which combine multi-
ple gRNAs, allow the targeting and alteration of multiple 
alleles, all members of a gene family or different func-
tional genes [13, 152, 153]. Multiplexing genome edit-
ing applications have been used to change many major 
crop plants [154–156]. In Camelina sativa, for exam-
ple, which is an allohexaploid plant, a complete knock-
out of all alleles of FAD2 (fatty acid desaturase 2) was 
achieved using CRISPR/Cas9 [157]. These changes would 
be extremely difficult, if not impossible to achieve using 
traditional mutagenesis or via spontaneously occurring 
mutations in nature. The camelina genome contains three 
subgenomes in two copies, thus each gene exists in six 
copies [158, 159]. To knock out all alleles of FAD2 by tra-
ditional mutagenesis, three complementary mutations in 
the FAD2 gene would have to be induced in each genetic 
locus in separate plants and subsequently each muta-
tion made homozygous. Those mutant plants would then 
have to be crossed with each other in order to obtain a 
single individual plant that contains all mutations. Simul-
taneous generation of a homozygous triple mutation of 
FAD2 causing an effective gene knockout using chemi-
cal or physical mutagenesis is extremely unlikely, as is 
the occurrence of such a camelina plant due to spontane-
ously emerging mutations.

Genome editing techniques can overcome limitations 
of the genetic linkage between different traits sometimes 
present in conventional breeding of plants [151, 160]. If 
a desired gene is linked to a gene with adverse effects on, 
e.g. yield or fruit shape, genome editing can be used to 
break this linkage drag by knocking out the undesirable 
gene. This removes the need for excessive backcrossing to 
break the linkage. Separation of linked genes is challeng-
ing and cumbersome using classical breeding methods, 
but is assisted by biotechnologies such as marker-assisted 
selection and genomic selection [161].

The limitations of traditional mutagenesis have led to 
a lack of regulatory experience with plants bearing more 
complex (multiple) novel traits (e.g. alteration of meta-
bolic pathways), as these have not been generated by tra-
ditional mutagenesis or recombinant DNA approaches 
but can now easily be induced by genome editing. Table 1 
gives examples of genome-edited crops that contain 
novel genetic combinations that would be difficult to 
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generate by traditional mutagenesis or first-generation 
genetic engineering techniques.

Market‑orientated genome‑edited crops
In an extensive review of genome editing applications and 
detection of off-target effects in plants, Modrzejewski 
et  al. systemically examined publications between 1996 
and May 2018 [93]. They found the majority of genome 
editing studies were published since 2013, demonstrating 
the recent rapid rise in the use of genome editing tech-
nologies in producing GM plants. Most plant genome 
editing publications examined used CRISPR/Cas tech-
niques, with a much smaller contribution from the other 
genome editing technologies TALENs, ZFNs and ODM. 
In most of the reviewed studies, crops were altered by 
SDN-1 approaches rather than SDN-2. They induced 
point mutations or indels without providing a DNA 
donor template as the efficiency of homology-directed 
repair is still low [93]. In their review [93], Modrzejew-
ski et al. considered 99 different applications in 28 differ-
ent plants to be market-orientated (in contrast to basic 
research). They classified genome editing applications 
as market-orientated when studies met the criteria: (1) 
genome editing was applied in an agricultural crop; (2) a 
trait was addressed that may be of interest for commer-
cialisation, and (3) the targeted trait was expressed in the 
edited plant when grown [93]. Rice had the most mar-
ket-orientated applications, followed by tomato, maize, 
potato, wheat and several other crops. Rice is relatively 
easy to regenerate from cell culture, facilitating genome 
editing and contributing to the high number of genome 

editing applications in rice. Rice is also a highly impor-
tant crop globally, particularly in China where a substan-
tial number of research papers on genome-edited crops 
originate [162]. However, it is worth noting that, despite 
research and field trials of GM rice, there is no commer-
cially grown GM rice in China or anywhere in the world 
[163].

Market-orientated traits in genome-edited plants are 
diverse but the most common are those relating to agro-
nomic value, followed by compositional changes (see 
Table 2) [93]. Searching for off-target effects can take the 
form of biased or unbiased searching. In biased search-
ing, in silico tools are used to predict possible off-target 
sites based on the sequence of the gRNA. These predicted 
sites are subsequently examined for off-target changes 
after the application of CRISPR/Cas using classical PCR 
analysis. In unbiased searching, WGS approaches are 
used to identify off-target effects genome-wide and not 
limited to only predicted sites. The number of predicted 
off-target effects was found to be highly variable across 
studies performing bias detection methods in plants, 
from zero to over 4000 [93]. As discussed in Modrze-
jewski et al. [93], the number of predicted off-target sites 
depends on various factors: differing sizes of genomes 
and number of chromosome sets between plants; differ-
ent prediction and analytical tools used; the number of 
hypothetical mismatches tolerated between the target 
sequence and potential off-target site and the design or 
selection of gRNAs to minimise off-target effects. So far, 
the vast majority of plant studies using genome editing 
applications are looking for off-target effects in a biased 

Table 1 Genome-edited crops with novel traits

Examples of plants containing novel traits developed by complex interventions in the respective genome, e.g. multiplexing approaches or removal of genomic 
linkage using genome editing techniques are shown together with ploidy level of the genome-edited plants, the size of their genome, the intended genomic 
alteration, the target gene(s), the associated trait and genome editing technique

CRISPR/Cas9, Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9; Mbp, Mega basepairs; SDN-1, Site-directed nuclease-1; Gb, Giga 
basepairs; TALENs, Transcription activator-like effector nucleases

Species Ploidy level Genome size Genomic alteration Target gene(s) Trait(s) Technological 
specification

References

Camelina Allohexaploid 750 Mbp Gene dosage, differ-
ent allelic combina-
tions

Fatty acid desaturase 
2 (FAD2)

Altered fatty acid 
composition

CRISPR/Cas9, SDN-1 [157]

Sugarcane Allopolyploid App. 10 Gb Alteration of 107 out 
of 109 COMT gene 
copies/alleles

Caffeic acid O-meth-
yltransferase 
(COMT)

Altered lignin biosyn-
thesis

TALENs,
SDN-1

[192]

Wheat Allohexaploid 14.5 Gb Alteration of 35 out of 
45 α-gliadin genes/
alleles

α-gliadin Reduced gluten 
content

CRISPR/Cas9, SDN-1 [168]

Rice Diploid 430 Mbp Multiplexing, altera-
tion of 8 different 
genes

BADH2, Gn1a, QTL, 
GS3, GW2, Hd1, EP3, 
LPA1

Increased yield, 
plant architecture, 
fragrance, photo-
period

CRISPR/Cas9
SDN-1

[220]

Tomato Diploid 900 Mbp Overcoming linkage 
drag

Truncation of joint-
less-2 gene

Easier harvesting CRISPR/Cas9, deletion [221]
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manner by investigating solely at in silico predicted sites 
of the genome, whilst a scant minority of these studies 
are using unbiased WGS approaches to identify off-target 
effects [93].

Genome‑edited farm animals
Currently, there are no commercial GM farm ani-
mals anywhere in the world, and the only GM animal 
approved for food use is limited to a GM salmon in Can-
ada and the U.S. [179]. One pharmaceutical produced by 
a GM goat was approved for medicinal use in the EU but 
has since been withdrawn from the EU market [180, 181]. 
The production of GM animals was limited by difficulties 
with first-generation genetic modification techniques for 
animals [84, 179]. In contrast, genome editing is reported 
to give more predictable results in animals [84–86] and 
the number of market-oriented studies of genome-edited 
farm animals is increasing. Although these are mostly 
proof of concept studies, they indicate that there may 
be applications in the near future to raise and market 
genome-edited farm animals as food.

An examination of the published scientific literature 
from 2014 to 2019, identified using in Google Scholar 
and Web of Science the search terms “genome-editing” 
or “gene-editing” with “animal” and “farm”, revealed that 
a wide range of traits have been engineered in farm ani-
mals using various genome editing techniques. Although 
not a comprehensive search, the examination provided 
examples of genome-edited farm animals that fall into 
two basic categories: those for increased productivity 
(Table  3) and those for increased efficiency of produc-
tion (Table  4), meaning adaptation of the farm animals 
to husbandry conditions and altered quality of the animal 

product. The majority (14) of genome-edited animals in 
Tables  3 and 4 were produced using SDN-1, whilst one 
used SDN-2 and five used SDN-3. However, there are 
multiple other studies of SDN-1 genome editing appli-
cations for both enhanced muscle growth and increased 
wool length (both productivity), raising the proportion of 
studies using SDN-1.

A systemic literature survey reviewing off-target and 
other unintended effects in genome-edited farm animals 
is lacking. We screened the publications from Tables  3 
and 4 for their analysis of off-target effects. No analy-
sis for off-target effects was performed in eight of the 
19 studies, whilst eight used biased detection methods 
(in silico prediction tools and conventional PCR) and 
one used WGS. Two reported altered cytokine levels or 
metabolism (Tables  3 and 4). Studies searching for off-
target effects in genome-edited animals follow a similar 
pattern to genome-edited plants, predominantly using 
biased detection methods with very few using unbiased 
WGS approaches. None of the studies conducted thor-
ough analysis for unintended on-target effects, although 
some searched for unintended integration of the plas-
mid. The hornless cattle were subsequently found to have 
unintended integration of the template plasmid contain-
ing the plasmid backbone and a second copy of the tem-
plate in the genome of the cow [76, 77].

Risk assessment for organisms developed through genome 
editing techniques
In the EU, genome-edited organisms are required to 
undergo both environmental and food and feed risk 
assessments, as is required of first-generation GMOs 
[20]. As yet, there are currently very few commercial 

Table 2 Characteristics of market-orientated applications of genome editing in plants ( adapted from [93])

Type of characteristic Number of studies 
(1996–2018)

Examples of traits Selected references

Increased agronomic value 38 Increased yield [164–167]

Improved storage

Altered flowering time/maturation

Altered composition 28 Reduced lignin content [157, 168, 169]

Altered fatty acid composition

Increased nutritional value

Biotic stress tolerance 16 Fungal resistance [170–172]

Bacterial resistance

Abiotic stress tolerance 5 Drought tolerance [173, 174]

Salt tolerance

Herbicide tolerance 8 Tolerance to glyphosate
Tolerance to imidazolinone/sulfonylurea
(ALS inhibitors)

[175, 176]

Industrial utilisation 6 Improved starch quality
Altered oil composition

[177, 178]
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applications of genome editing and these are confined 
to agricultural applications and largely confined to the 
U.S., where the regulatory approach differs from that of 
Europe [182]. The regulatory approach in the U.S. relies 
largely on whether the inserted components, or the 
organisms they are derived from are plant pests, e.g. a 
known toxin or invasive species [183]. This approach 
has led the United States Department of Agriculture 
(USDA) to not require an environmental risk assessment 
for genome-edited plants that “could otherwise have been 
developed through traditional breeding techniques as 
long as they are not plant pests or developed using plant 
pests” [31]. Nevertheless, many crops that are altered by 
genome editing applications contain genetic combina-
tions (resulting in novel traits) that have not been devel-
oped through traditional breeding techniques so far, even 
though they do not contain inserted genes. Although 
genome-edited plants intended as food are likely to 
undergo a voluntary food safety assessment prior to 
being placed on the U.S. market [184], the lack of an envi-
ronmental risk assessment for genome-edited crops in 
the U.S. has been met with concerns from scientists and 
other stakeholders, many of whom consider oversight is 
necessary [182, 185].

To the end of 2019, the USDA Animal and Plant Health 
Inspection Service (APHIS) lists 28 letters (27 genome-
edited plants and one genome-edited mushroom) from 
companies and research institutions enquiring whether 
their genome-edited products fall under the biotechnol-
ogy regulations. All are deemed to not meet the definition 

of a regulated article under the U.S. biotechnology 
regulations. This means unintended effects, including 
genomic irregularities are neither considered (including 
their presence or absence) nor assessed. Furthermore, in 
many of the letters of inquiry filed on the USDA-APHIS 
list, no information about the altered genes contained in 
these genome-edited organisms are provided as it is con-
sidered confidential business information [31]. So far, 
all the genome-edited organisms’ applications deemed 
non-regulated have used first-generation genetic engi-
neering techniques (e.g. transformation with Agrobacte-
rium tumefaciens or particle bombardment) to randomly 
insert DNA containing the CRISPR/Cas components into 
the recipient’s genome.

There is currently discussion whether genome-edited 
organisms could be exempted from the EU GMO regu-
lation and whether it should be revised to focus on 
the product, rather than the process used to generate 
them [186]. One argument for the exemption of certain 
genome-edited organisms includes considerations of 
whether the changes induced by SDN-1 (or even SDN-
2) are similar to those that might arise spontaneously 
and naturally or through conventional breeding or tra-
ditional mutagenesis (i.e. do not contain inserted genes). 
The basis for this line of argument is that GMOs devel-
oped by traditional mutagenesis are exempted from the 
EU GMO regulations based on their “history of safe 
use” [187]. However, genome editing is a relatively new 
genetic engineering technique and has no history of 
use, or indeed “history of safe use”. Unintended effects 

Table 3 Examples of genome editing in farm animals for increased productivity

Target genes, traits, and the genome editing technique used to create genome-edited farm animals with increased muscle mass growth or wool/hair length are 
shown. The respective references were also screened for the analysis of off-target effects

CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated 9; SDN-1, site-directed nuclease-1; TALENs, transcription activator-like 
effector nucleases; OTEs, off-target effects

Animal Target Trait Technological specification References Off-target analysis

Cow Myostatin (MSTN) gene 
knockout

Enhanced muscle growth TALENs (SDN-1) [222] No analysis of OTEs

Sheep MSTN gene knockout Enhanced muscle growth CRISPR/Cas9 (SDN-1) [223] Biased, screened 17 predicted 
off-target sites: no OTEs 
detected

TALENs (SDN-1) [222] No analysis of OTEs

CRISPR/Cas9 (SDN-1) [224] Biased, screened 7 predicted 
off-target sites: 2 OTEs 
detected

Goat MSTN gene knockout Enhanced muscle growth CRISPR/Cas9 (SDN-1) [225] Abnormal sugar, fat and protein 
metabolism

Pig MSTN gene knockout Enhanced muscle growth TALENs (SDN-1) [226] No analysis of OTEs

Sheep Fibroblast growth factor 5 
(FGF-5) gene knockout

Increased wool and hair 
length

CRISPR/Cas9 (SDN-1) [227] Biased, screened 3 predicted 
off-target sites: no OTEs 
detected

Goat FGF-5 gene knockout Increased wool and hair 
length

CRISPR/Cas9 (SDN-1) [228] No analysis of OTEs
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such as unintended integration of DNA caused by the 
genome editing process have only been observed rela-
tively recently, and more types of unintended effects may 
be discovered as research progresses. A second argument 
considers whether the precision of genome editing ren-
ders it less prone to unexpected effects than conventional 
breeding or traditional mutagenesis [188–190]. However, 
we have shown here that genome editing can cause spe-
cific unintended effects and can be used to generate novel 
genetic combinations that cannot readily be achieved 
using conventional breeding or mutagenesis techniques. 
In a more general sense, genome editing utilises SDNs 
and oligonucleotides, which can be classified as biologi-
cal mutagens [191]. In contrast to chemical or physical 
mutagens used in traditional mutagenesis, these agents 

can interact in a targeted way with the biological mecha-
nisms in the cell, on the level of the genome and/or epig-
enome. Hence, the basis of the two types of techniques is 
fundamentally different and not comparable.

As the example of genome editing in sugarcane shows 
(see Table 1) [192], the power of even the least intrusive 
genome editing application  (SDN-1) can readily surpass 
the extent of changes feasible with traditional mutagen-
esis techniques or spontaneous mutations, especially if 
repeatedly applied. Other examples described here dem-
onstrate the range of genomic irregularities, both off-tar-
get and on-target that have been found in genome-edited 
plants and animals from SDN-1 and SDN-2 applications. 
Similarly, even with SDN-1, unintended consequences 
of genome editing, such as exon skipping can arise. 

Table 4 Examples of genome editing in farm animals for increased efficiency of production

Target genes, traits and genome editing technique used to create genome-edited farm animals with increased efficiency of production are shown. The respective 
references were also screened for the analysis of off-target effects

CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated 9; SDN-1, site-directed nuclease-1; TALENs, transcription activator-like 
effector nucleases; OTEs, off-target effects; ZNF, zinc finger nucleases
a These two studies relate to the development of the same genome-edited organism and are treated as one study

Animal Target Trait Technological specification References Off-target analysis

Cow Intraspecies POLLED allele 
substitution

No horns TALENs (SDN-3) [137] WGS, no OTEs detected.
But: additional integration of 

template plasmid discov-
ered using whole genome 
sequencing data [76, 77]

Pig Deletion of SRCR5 region of 
CD163

Resistance to PRRSV CRISPR/Cas9 (SDN-1) [229, 230] a Altered cytokine levels (CCL3L1 
and MIG)

CRISPR/Cas9 (SDN-1) [231] No analysis of OTEs

Pig Knockins of antiviral small 
hairpin RNAs (shRNAs) at 
Rosa26 locus

Resistance to African swine 
fever

CRISPR/Cas9 (SDN-2) [232] Biased, screened 10 predicted 
off-target sites: no OTEs 
detected

Pig Gene knockout of ANPEP 
(Amino peptidase N)

Resistance to TGEV CRISPR/Cas9 (SDN-1) [233] No analysis of OTEs

Knockin of CRISPR/Cas9 
targeting viral p30 gene

CRISPR/Cas9 (SDN-3) [234] No analysis of OTEs

Cow Gene knockin of human 
lysozyme (hLYZ) gene to 
bovine β-casein locus

Increased antibacterial prop-
erties in their milk (reduced 
susceptibility to mastitis)

ZNF (SDN-3) [235] Biased, screened 10 predicted 
off-target sites: no OTEs 
detected

But: random integration of 
transgenic fragments at an 
off-target site

Cow Gene knockin of mouse 
SP110 gene

Increased resistance to 
tuberculosis

TALENs (SDN-3) [236] No analysis of OTEs

Gene knockin of bovine 
NRAMP-1 gene

CRISPR/Cas9 nickase
(SDN-3)

[237] Biased, screened 15 predicted 
off-target sites: no OTEs 
detected

Chicken Gene knockout of ovomucoid 
(OVM)

Reduced allergenicity CRISPR/Cas9 (SDN-1) [238] Biased, screened 3 predicted 
off-target sites: no OTEs 
detected. Analysis of plasmid 
integration: negative

Gene knockout of ovalbumin 
(OV)

Reduced allergenicity TALENs (SDN-1) [239] Biased, screened predicted off-
target sites: no OTEs detected. 
Analysis of plasmid integra-
tion: negative
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Therefore, it is not possible to make a general presump-
tion that genome-edited organisms created by SDN-1 
and SDN-2 applications do not pose additional risks 
compared to conventional breeding processes based on 
the fact that no novel genes remain (or were not inserted) 
in the genome. Genomic irregularities, caused by the 
genome editing process, have potential implications for 
food, feed and environmental safety.

The reported unintended effects, including off-target 
effects and on-target effects, in the published literature 
suggest that a robust risk assessment is necessary for 
genome-edited organisms to identify unintended altera-
tions arising from the application of genome editing and 
how these relate to food, feed and environmental safety. 
We therefore consider, in keeping with others [13, 111], 
that not only is risk assessment necessary, but that broad-
ening of the EU GM risk assessment is also necessary to 
ensure that new types of genomic irregularities and asso-
ciated hazards are captured within the risk assessment 
process.

Risk assessment guidelines for products of first-genera-
tion genetic engineering technology have been developed 
by EFSA for the environment [21, 22] and for food and 
feed [23, 24]. Depending on the specific genome editing 
application, many of the concerns associated with first-
generation GMOs also apply to organisms developed 
through new genetic engineering techniques. However, 
genome editing techniques can cause additional, specific 
unintended genomic irregularities in many cases, imply-
ing that current guidelines and much of the experience 
gained from risk assessment of first-generation GMOs 
cannot be directly extrapolated to the risk assessment of 
genome editing organisms. Therefore, the risk assessment 
guidelines, both for the environment and food/feed, will 
require revision and expansion to ensure they capture all 
hazards associated with genome-edited organisms [111]. 
The risk assessment guidelines will also have to undergo 
regular review and revision as genome editing techniques 
and their new applications (e.g. base editing, prime edit-
ing, RNA editing, epigenome modification) develop and 
as knowledge of the risks (e.g. of unintended effects) is 
gained.

In general, the risk assessment procedure falls short of 
identifying and quantifying all risks to the environment, 
animals and humans because of incomplete knowledge of 
the organismal effects of genetic modification (intended 
or unintended), the receiving environment (e.g. ecol-
ogy of the agricultural environment) and interactions 
between the GMO and the receiving environment. In 
addition, EFSA’s approach to the risk assessment has 
been criticised as reductionist in terms of its conceptual 
understanding of biology, genetics and ecology, primar-
ily because of the assumption made that each genetic 

change acts independently of any and all other genes 
and changes [185]. It is evident that the scientific meth-
odology used in the risk assessment will need further 
consideration and the role of the precautionary princi-
ple strengthened. All GMOs, including genome-edited 
GMOs, can have adverse impacts on the environment 
and food/feed safety but data are limited, and scientific 
uncertainty remains high.

There are two broad categories of hazards relating to 
the risk assessment of GMOs. These are:

1) Those related to the genetic engineering process and
2) Those related to the trait.

Both categories require additional elements to be con-
sidered to include hazards specifically associated with 
genome-edited organisms.

Risk assessment related to the genome editing process
All genome editing applications, SDN-1, SDN-2 and 
SDN-3, can lead to genomic irregularities at the molecu-
lar level, including alterations at off-target sites and at/
around the target site [76, 93, 125, 127]. Additional ways 
in which unintended effects could arise may yet be dis-
covered. The consequences of unintended effects for the 
risk assessment cannot be evaluated in a general sense as 
they are likely to be highly dependent on the actual unin-
tended effect itself. Similar to genomic irregularities in 
GMOs produced by first-generation genetic engineering 
technologies, unintended effects in genome-edited crops 
could lead to a variety of unexpected effects. For example, 
the functioning of a particular (non-target) gene may be 
compromised if its component DNA has been cleaved by 
the nuclease. This could lead to changes in the organisms’ 
biochemistry, including its metabolic and protein profile 
which, in turn, could affect its toxicity and allergenicity. 
As this could impact food, feed and environmental safety, 
any genome-edited organism would need to be screened 
genome-wide for genetic irregularities. Such effects that 
are detected would need to be evaluated for their poten-
tial consequences prior to any deliberate release to the 
environment (including field trials) and placing on the 
market as food or feed.

For each genome-edited organism, the risks will need 
to be assessed individually, covering genomic irregulari-
ties affecting both off-target sites, alterations at/around 
the intended target site and unintended consequences, 
including those of gene multifunctionality. The report-
ing of on-target effects away from the target site indicates 
the need to broaden the definition of off-target effects 
beyond those created by gRNA recognition error. Off-
target effects may not only be exclusively small, unin-
tended alterations of the nucleotide sequence occurring, 
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but can also include large rearrangements and deletions. 
Unintended effects arising from the application of first-
generation genetic engineering technology (i.e. inser-
tion of recombinant DNA) to introduce the CRISPR/Cas 
components will need to be considered as well. There is 
a need to search for irregularities in both the genome 
and epigenome of a first-generation GMO and genome-
edited GMOs that employ first-generation genetic engi-
neering techniques. However, as yet, EFSA does not 
require applicants to submit data on epigenetic altera-
tions for GMOs.

Although according to the EU Directive 2001/18/
EC and Regulation (EC) No. 1829/2003 information on 
both intended and unintended effects as a result of the 
genetic modifications are required, the requirements 
for molecular data are focussed on the DNA insert and 
flanking regions, pertinent to first-generation GMOs. 
These requirements may need to be revised to ensure 
that DNA data are not restricted to any particular region 
of the genome, but are instead genome-wide, e.g. a man-
datory request for sequencing data on the whole genome. 
To date, a substantial majority of genome editing stud-
ies searching for off-target effects used biased in silico 
approaches to investigate the genome at predicted sites 
[93]. However, these approaches may miss genomic irreg-
ularities including unintended insertions and genomic 
rearrangements, which could be better identified by 
applying standardised protocols, e.g. whole genome 
sequencing combined with a robust bioinformatic analy-
sis. However, some genetic variations identified by whole 
genome sequencing may not be able to be unambiguously 
assigned to either unintended alterations or naturally 
occurring variations. More research is needed to decide 
on a protocol for adequate and unbiased investigation of 
off-target effects and other genomic irregularities.

Particularly for genome-edited GMOs, it is already 
apparent that unintended irregularities can occur at sev-
eral levels, not only at the genomic level, but also at the 
epigenetic and transcriptomic levels. Thus, a risk assess-
ment requires information, not only of the whole genome 
and epigenome, but also of the transcriptome, proteome 
and metabolome to assess the consequences of unin-
tended effects. However, data on neither the epigenome 
nor transcriptome are currently required in the risk 
assessment of GMOs. Several available techniques could 
assist assessment of the risks of genome-edited GMOs, 
and also improve the current risk assessment of GMOs 
created by the first-generation genetic engineering tech-
nology. These are collectively summarised as ‘omics 
approaches and include analyses of the DNA (genomics), 
the RNA profile (transcriptomics), proteins (proteomics) 
and metabolites (metabolomics) [193–195]. These tech-
niques are either being, or could be, further developed 

to refine their capabilities to be used to analyse GMOs 
[196–198], and in the near future, submission of data 
from these techniques could be a requirement in support 
of an application to commercialise all genome-edited 
organism. Further developments and improvements of 
metabolomics methods are potentially useful to assist 
the traceability and labelling of genome-edited organisms 
[191]. Plants share their habitat with a variety of microbes 
that include bacteria, fungi, oomycetes and viruses [199–
201]. The composition of a plant’s microbiota depends 
on complex multilateral interactions between the abiotic 
environment and its biotic inhabitants [201]. The rhizo-
sphere, for example, is part of the soil that is influenced 
by secretions of a plant’s roots and can contain more 
than 30 000 prokaryotic species [202]. The genome of all 
microbes (microbiome) is considered as a plant’s second 
genome as it is much larger than that of the plant. Micro-
biomes are important for nutrient uptake like phospho-
rus and nitrogen of plants. In return, the microbiome is 
provided with carbon in root exudates [201]. Amongst 
others, the microbiome also modulates a plant’s immu-
nity and prevents its colonisation by pathogens [203]. 
Thus, the microbiome plays an important role for func-
tional traits of a plant such as crop yield and nutrient 
quality [204]. Genome-edited plants would also need to 
be analysed in regard to the composition of their micro-
biome using, for example, metabolomics approaches 
[205]. Comprehensive studies investigating community 
dynamics are necessary, as individual microbial species 
regulate the community structure and stability [205]. 
More research needs to be done further investigating the 
host–microbiome interaction and defining host–micro-
biome systems for crop plants with standardised micro-
bial culture collections and reference genomes [206].

EFSA’s opinion on SDN-3 from 2012 [26] considers 
that genome editing can “minimize hazards” or that off-
target changes would be “fewer than those occurring with 
most mutagenesis techniques” and be “of the same types 
as those produced by conventional breeding techniques”. 
However, as described above, a large number of pub-
lications since 2012 demonstrate that several types of 
genomic irregularities can often be generated using SDN-
1, SDN-2 and SDN-3 applications. Many of these irregu-
larities are specific to genome editing, and substantially 
different to those produced by conventional breeding. 
Genome editing techniques are fundamentally different 
to traditional mutagenesis, inferring that errors induced 
are not directly comparable. Therefore, this EFSA state-
ment has little to no scientific basis and the comparison 
with conventional breeding and traditional mutagenesis 
requires re-visitation and revision in light of the new pub-
lications. Genomic irregularities generated by genome 
editing could have far reaching consequences, possibly 
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with important consequences for environmental, food 
and feed safety. In addition to genomic irregularities, 
SDN-1 and SDN-2 applications also have the potential 
to generate changes of the genome that were not possible 
so far, creating biological characteristics which were not 
achieved by conventional breeding up to now. Thus, the 
risks of a genome-edited organism need to be fully inves-
tigated for further conclusion on its safety.

Risk assessment related to the trait
The risk assessment for genome-edited plants will have 
to consider a broader spectrum of new genetic com-
binations and novel traits compared to the rather few 
traits introduced by first-generation genetic engineer-
ing technology (predominantly herbicide and insecticide 
resistance and combinations thereof ) [13, 111, 151]. For 
genome-edited farm animals, most traits and genetic 
combinations will be novel as, to date, there have been 
no applications to market GM farm animals for food use 
in the EU and existing EFSA risk assessment guidelines 
for animals largely focusing on insects and fish [22, 24]. 
The broad spectrum of possible traits is likely to pro-
vide new, and potentially complex, issues for risk assess-
ment. Certain traits represent a special challenge for risk 
assessment. Traits such as altered nutrition can intro-
duce a compound into an (agricultural) ecosystem where 
that compound does not normally or naturally exist. For 
example, a (first generation) GM camelina producing 
long-chain fatty acids which are novel to the terrestrial 
environment [207] was found to exert toxic effects on 
certain Lepidoptera [208] which could adversely affect 
the food web.

Risk assessment related to the trait of a genome-edited 
organism is, to some extent, similar to that which exists 
for GMOs developed using first-generation genetic engi-
neering techniques [21, 23, 24]. That is, the trait will need 
to be assessed for its environmental safety (e.g. inter 
alia toxicity to non-target organisms, potential changes 
to invasiveness) and human and animal safety (e.g. inter 
alia allergenicity). First-generation GMOs predominantly 
consist of herbicide-tolerant and insect-resistant crops, 
and this is where the EU experience of assessing GMO 
traits lies. By contrast, the traits that can, at least theo-
retically, be conferred by genome editing are highly var-
ied and the possibilities to alter the genome resulting in 
new genetic combinations are more numerous [13, 111, 
151, 160]. We showed (Table 1) some examples of crops 
containing novel traits, that were naturally present in the 
plants and modified by SDN-1 applications (e.g. wheat 
modified by CRISPR/Cas to have a lower gluten content 
[168]). These altered traits pose challenges for risk assess-
ment as they can have an impact on plant interactions 
with the biotic environment. Thus, there is a requirement 

for studies to assess the potential impacts of traits other 
than herbicide tolerance and insect resistance. Further-
more, the impact of the intended (multiple) changes of 
the genome requires evaluation regarding their poten-
tial interference in signalling and metabolic pathways. 
In some cases, it will be difficult or even not possible to 
identify appropriate non-GM comparators, a problem 
also identified with nutritionally enhanced GM crops 
developed through first-generation GM techniques.

Eckerstorfer et  al. reviewed the novel traits of GM 
plants developed by new genetic engineering techniques 
[13]. They suggest to group these into three classes for 
the risk assessment: (1) those related to traits in con-
ventionally bred plants; (2) those with traits similar to 
established first-generation GM plants and (3) those 
which have been established neither in conventional nor 
other biotechnological methods. Prior knowledge may be 
insufficient and available information limited for many of 
these traits. The authors suggested that, for each trait, it 
is important to consider, not only the modification itself, 
but also the impact of the modification and the novel trait 
on the physiology and phenology of the GM plant [13]. 
Furthermore, they highlight the importance of consider-
ing the specific characteristics of the technical approach 
and the existing knowledge on potential for unintended 
changes/off-target activity. This suggests that, whilst it is 
important to both detect and assess unexpected effects at 
the organism level, it may also be important to attribute 
these changes to either unintended genomic irregulari-
ties, or consequences of the novel trait.

Broadening the risk assessment
Currently, there are only a few publications discussing 
risk assessment of genome-edited organisms in detail [13, 
111, 182]. This is remarkable considering the growing 
number of publications, as reviewed here, that describe 
the potential for the creation of genetic errors during 
the genome editing process. As we have shown here, 
there are specific risks associated with genome editing 
that could impact food/feed and environmental safety. 
Therefore, the current EU risk assessment of GMOs will 
require broadening to encompass the additional chal-
lenges posed by genome-edited plants and animals. This 
broadening of the risk assessment would be greatly facili-
tated by a well-funded, independent research programme 
to comprehensively examine the range of potential 
genetic errors created by genome editing processes and 
validate (or otherwise reject) any assumptions and prem-
ises regarding the potential risks of gene-edited organism 
for the environment and human and animal health.

Specific risks associated with the genome editing pro-
cess and risks associated with the novel trait generated 
using genome editing, as well as risks associated with the 
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use of older genetic engineering techniques in genome 
editing are summarised in Fig.  1. The additional types 
of unintended genomic irregularities require the cur-
rent examination of DNA to be expanded to encompass 
examination of epigenetic changes and changes in the 
transcriptome, proteome and metabolome of the GMO 
(Fig.  1d). Such examinations will require further devel-
opment of WGS and ‘omics approaches [191], and may 
be assisted by new analytical tools in the future. Such 
tools may also facilitate the detection and identifica-
tion of genome-edited crops and animals, which in turn 
could assist in the traceability and labelling of GMOs to 
enable consumer choice [209], and protection of agricul-
tural systems that exclude GMOs, e.g. organic agriculture 
[210]. For traceability, the key documentation required 
is molecular data on the altered DNA sequences (both 
the intended and unintended changes) made during the 
genome-editing process. As with first-generation GMOs, 
these data would assist independent monitoring for the 
presence/absence of these GMOs, e.g. in food [163]. In 
addition, should undesirable effects emerge documenta-
tion of altered genomic sequences will allow the origina-
tor to be traced, facilitating recall, if at all possible.

Whilst suitable tools for the detection of genome-
edited organisms may currently be considered difficult 
to develop or implement [211], it is notable that methods 
to detect the occurrence of genomic irregularities at, or 
near, the target site during the genome editing process 
have only recently been developed and applied [94, 125, 
212]. Risk assessment related to traits will require addi-
tional knowledge of their consequences for the organism 
and the impacts when released into the environment, 
which would be aided by further research. This may be 
particularly necessary for traits where experience with 
either current GM plants or conventional plants are 
lacking and/or there is a lack of adequate comparators. 
In addition, genomic irregularities may be important 
in terms of gene x environment interactions and could 
be combinatorial and/or cumulative. This aspect could 
magnify uncertainties and unknowns in regard to envi-
ronmental risk assessment of genome-edited organisms 
[213].

There is a complete lack of experience in the risk 
assessment related to any GM traits in farm animals as 
there have not yet been applications for the marketing of 
GM animals in the EU, developed by either first-genera-
tion or genome editing techniques. This too may require 

a b

c d

Fig. 1 Elements of a risk assessment for genome-edited organisms. Risk assessment of genome-edited organisms requires consideration of risks 
associated with (a) the process of genome editing causing unintended changes of the genome, epigenome, transcriptome, metabolome and 
microbiome, (b) the use of first-generation genetic engineering techniques causing unintended effects such as rearrangements of the genome 
or epigenetic changes, and (c) the trait leading to unintended effects at the molecular, cellular, organismal and ecosystem levels. For a robust risk 
assessment standardised protocols (d) are needed as well as the implementation of comprehensive ‘omics studies for detection and prediction of 
unintended changes
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further research. Unlike the molecular characterisation, 
risk assessment related to the GM trait may necessitate 
evaluation as applications with new traits are made.

It is important that adequate standards for the risk 
assessment of genome-edited organism are set by the 
EU Commission by establishing a robust framework for 
EFSA [214, 215]. The EU Commission adopted Regu-
lation (EC) No 503/2013 which sets the standards for 
assessing food and feed safety. A similar implementing 
regulation, using EU Directive 2001/18/EC as a legal 
basis, could set the standards for the risk assessment of 
genome-edited plants and animals without a change of 
EU GMO regulation. Such an implementing regulation 
would require EFSA to consider the specific risks asso-
ciated with genome editing (as indicated in Fig.  1). The 
monitoring of GMOs after being placed on the market is 
a required part of risk management in the EU, either as 
a general surveillance for the detection of unanticipated 
adverse effects or as case-specific monitoring to detect 
direct and indirect effects that have been identified in 
the environmental risk assessment [14]. According to 
Council Decision 2002/811/EC, monitoring should not 
be regarded as research per se but as a means to evalu-
ate or verify results and assumptions arising from previ-
ous research and evaluation of potential risk and research 
[216]. Thus, post-market monitoring can be used to sur-
vey for any, as yet unidentified, new or novel risks asso-
ciated both with each individual genome-edited GMOs, 
and more generally, as a result of the genome editing pro-
cess but monitoring cannot be considered as being a sub-
stitute to risk assessment.

There is growing awareness that science-based risk 
assessment for GMOs, including genome-edited organ-
isms, is limited in scope and that the use (or non-use) 
of GMOs in agriculture also depends on societal values. 
Proposals to expand the scope of the regulation and gov-
ernance of GMOs beyond science-based risk assessment 
include the recognition of the underlying values and 
assumptions shaping science and innovation, respect for 
ethical, societal and cultural values, ensuring the sustain-
ability of agricultural systems and the consideration of a 
range of alternatives to food derived from GMOs [217, 
218]. The complexity of issues in this expanded govern-
ance may benefit from the involvement of a broad range 
of people from different societal sectors [217].

Significant societal concern surrounds GMOs, includ-
ing genome-edited animals, particularly farm animals 
as they are sentient [85, 179, 219]. Considerations of the 
welfare of GM animals are included in EFSA’s guidance 
[24]. However, what constitutes “better” welfare for GM 
animals is ill-defined as a trait aimed at improving animal 
welfare may, in practice, facilitate poor animal manage-
ment in the first place. For example, disease resistance 

allows pigs to be kept in less hygienic or more crowded 
enclosures [179]. Animal welfare issues highlight the 
need for expanded governance as societal concerns may 
be critical in terms of consumer acceptance of products 
from GM animals [85, 219].

Conclusions
We have shown here that genome editing can cause 
genomic irregularities in the resultant GMOs, even 
if genes are not inserted, or inserted only transiently. 
Whilst molecular characterisation requirements in the 
current EU risk assessment guidelines for GMOs may 
capture many of these irregularities, some may be spe-
cific to genome editing, e.g. unintentional integration of 
plasmid components or large deletions at genomic loca-
tions distant to the target side and elude detection under 
current guidelines.

Therefore, the current EU risk assessment guidance 
for GMOs requires revision and expansion. Expansion 
of the molecular characterisation element of the risk 
assessment that enables analysis for off-target effects, 
unintended on-target effects and effects on genomic reg-
ulation is needed. Detection of any downstream effects 
and genomic irregularities will require development and 
standardisation of ‘omics technologies. Applications of 
such technologies would also improve the risk assess-
ment of first-generation GMOs. The EU risk assessment 
for genome-edited organisms will also require considera-
tion of a broader range of crop traits than first-genera-
tion GMOs. For some traits of genome-edited crops and 
animals there may be a complete lack of experience in 
assessing risks to the environment, food and animal feed. 
Further developments in technologies to assist detec-
tion of off-target effects and unintended on-target effects 
caused by genome editing are needed, as are develop-
ments in technologies to detect the resultant GMOs. 
However, the technological problems are not insur-
mountable, and techniques can be developed if there is 
political will to do so.
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