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ABSTRACT
Background. Pesticidal RNAs that silence critical gene function have great potential
in pest management, but the benefits of this technology must be weighed against non-
target organism risks.
Methods. Published studies that developed pesticidal double stranded RNAs (dsRNAs)
were collated into a database. The target gene sequences for these pesticidal RNAs were
determined, and the degree of similarity with sequences in the honey bee genome were
evaluated statistically.
Results. We identified 101 insecticidal RNAs sharing high sequence similarity with
genomic regions in honey bees. The likelihood that off-target sequences were similar
increased with the number of nucleotides in the dsRNA molecule. The similarities of
non-target genes to the pesticidal RNA was unaffected by taxonomic relatedness of the
target insect to honey bees, contrary to previous assertions. Gene groups active during
honey bee development had disproportionately high sequence similarity with pesticidal
RNAs relative to other areas of the genome.
Discussion. Although sequence similarity does not itself guarantee a significant
phenotypic effect in honey bees by the primary dsRNA, in silico screening may help
to identify appropriate experimental endpoints within a risk assessment framework for
pesticidal RNAi.
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INTRODUCTION
The potential to silence critical gene function in pest species has led to the proposed
application of RNA interference (RNAi) as a novel class of agricultural products (Price &
Gatehouse, 2008; Gu & Knipple, 2013) that target several species of economically important
pests (Baum et al., 2007; Maori et al., 2009; Desai et al., 2012; Hajeri et al., 2014; Marr et
al., 2014). These RNAi-based pesticides may be delivered to the target pest via a number
of methods, including transgenic plants, diet-incorporated suspensions, and topical
applications of naked or encapsulated small RNAs, which elicit post-transcriptional gene
silencing following ingestion. Once ingested, the insect’s cellular machinery cleaves long
double stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that are
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19–25 nucleotides in length; these siRNAs serve as the functional unit of RNAi and govern
the location of gene suppression through the degradation of complementary messenger
RNAmolecules (Fire et al., 1998;Martinez et al., 2002; Vermeulen et al., 2005). To date, this
process has been investigated in the control of a number of pest groups, including parasites
of medical importance, urban pests, pests and pathogens of honey bees, and agricultural
pests of economic importance.

While the technology promises to be target specific (Whyard, Singh & Wong, 2009;
Bachman et al., 2013), there is concern that current risk assessment frameworks for
genetically modified crops are not adequate to proactively assess the risks to non-target
organisms (Romeis et al., 2008; Lundgren & Duan, 2013; FIFRA-SAP, 2014). The risks
associated with RNAi to non-target organisms include immune stimulation (Lu & Liston,
2009), saturation of an organism’s RNAi machinery that could interfere with normal
cellular processes (Grimm, 2011; Flenniken & Andino, 2013), and unintentional gene
silencing. Unintentional gene silencing in non-target organisms is the primary risk posed
by pesticidal RNAi; within a non-target species, this unintentional gene silencing can be due
to silencing the intended gene in an unintended organism (non-target binding) or silencing
a different gene with sufficient sequence similarity to the dsRNA (off-target binding)
(Lundgren & Duan, 2013; FIFRA-SAP, 2014). Because pesticidal RNAi poses risks to non-
target organisms that are different from other pesticides, a risk assessment framework
has been proposed to proactively assess these risks using a series of steps (FIFRA-SAP,
2014; Roberts et al., 2015). Indeed, the United Nations employs the precautionary principle
when conducting risk assessment of genetically modified organisms to ensure that these
products do not adversely affect the environment (https://bch.cbd.int/protocol; accessed
November 7, 2017).

Bioinformatic analyses that compare pesticidal RNAs to non-target genomes can help
focus more extensive risk assessment procedures to predict some risks (Heinemann,
Agapito-Tenfen & Carman, 2013). The hazard to non-target organisms should be
predictable if the functional genome of a non-target organism is known, recognizing
that numerous circumstances influence gene silencing even when the sequence is identical
between a small RNA and the non-target genome (Kerschen et al., 2004). Bioinformatic
analyses have thus been advocated as an initial screen of potential risks posed by RNAi
(FIFRA-SAP, 2014; Roberts et al., 2015). In the present study, we used in silico searches
to determine whether putative pesticidal dsRNAs share sequence similarities with off-
target regions of the honey bee (Apis mellifera L.), a model non-target organism. We
were specifically interested in testing the hypotheses that (1) longer dsRNAs increase the
potential for off-target binding, (2) non-target silencing of the target gene is dependent on
relatedness of the target and non-target species, and (3) certain gene groups in the honey
bee are more prone to off-target sequence similarities with pesticidal dsRNAs.

MATERIALS AND METHODS
Literature review
In broad terms, our approach was to examine the literature for published pesticidal RNAs
against an identified suite of pests, and search the targeted gene sequences in the pests
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for similarities with regions of the honey bee genome. Published studies evaluating the
effects of pesticidal dsRNAs were searched using the ISI Web of Knowledge database,
using combinations of the search terms ‘‘pesticidal,’’ ‘‘insecticidal,’’ ‘‘siRNA,’’ ‘‘dsRNA,’’
‘‘RNAi,’’ and ‘‘RNA interference.’’ See the introduction for a description of these terms.
Studies were included if they evaluated the pesticidal effects of a dsRNA or siRNA and
provided either the RNA sequence or primer sets that allowed the RNA sequences
to be determined from the target species’ genome using the NCBI genome database
(http://www.ncbi.nlm.nih.gov/genome/). A total of 24 studieswere included,with pesticidal
qualities being evaluated for 74 dsRNAs and 21 siRNAs targeting 57 genes (Data S1). These
included species of medical importance (Hajdusek et al., 2009; Kwon, Park & Lee, 2013),
urban pests (Zhou et al., 2008; Itakura et al., 2009), parasites and pathogens of honey
bees (Maori et al., 2009; Campbell, Budge & Bowman, 2010; Desai et al., 2012), agricultural
pests (Mutti et al., 2006; Baum et al., 2007; Whyard, Singh & Wong, 2009; Tang, Wang &
Zhang, 2010; Choudhary & Sahi, 2011; Wuriyanghan, Rosa & Falk, 2011; Gong et al., 2013;
Ochoa-Campuzano et al., 2013; Yao et al., 2013; Christiaens, Swevers & Smagghe, 2014; Chu
et al., 2014; Han et al., 2014; Meng et al., 2014; Miyata et al., 2014; Yu et al., 2014), and
others (Whyard, Singh & Wong, 2009; Kelkenberg et al., 2015; Petrick et al., 2015).

In silico sequence similarity identification
Published pesticidal dsRNAs ranged from 19 to 2500+ nucleotides in length. These
were queried against the annotated honey bee genome accessed through GenBank
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the BLAST nucleotide algorithm for
somewhat similar sequences (blastn). Similar genetic regions were mostly less than 25 nt
long, the length expected for active siRNAs randomly generated from a dsRNA molecule.
Sequence similarities of 19/21, 20/21, and 21/21 nt were tallied for each RNA against the
honey bee genome, and the off-target gene name was recorded. Each off-target gene was
only tallied once per dsRNA, even when that dsRNA targeted multiple locations along
that gene. Sequence similarity for the target gene (non-target binding) was also recorded.
Low quality proteins (as defined by NCBI) and genes of unknown function were excluded
from the analysis, as were any regions with high sequence similarity that did not return
any protein or gene information, such that the resultant database represents a conservative
estimate of putative binding.

Statistical analysis
Because data violated parametric assumptions, the number of off-target similarities were
log(x+1) transformed and dsRNA length were log transformed to uphold assumptions
for analysis with linear regression (Systat v.13.1; Systat San Jose, CA, USA). A chi-square
test of independence was used to determine whether there was a significant effect of target
taxa on the incidence of non-target binding in honey bees, and whether certain functional
gene groups were targeted more frequently.
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RESULTS AND DISCUSSION
dsRNA length-suppression
Each of the 74 pesticidal dsRNAs shared at least one region of perfect or high sequence
similarity with the honey bee genome (average 28.6 ± 3.32 off-target homologies per
dsRNA) (Data S1). However, none of the published pesticidal siRNAs (21 total, 19–23
nt in length) found sequence similarity within the honey bee genome at our specified
level (19/21, 20/21, 21/21 nt matches), indicating that these much smaller sequences were
more specific when focusing on a single non-target organism. This result was mirrored
by Li et al. (2015), though siRNAs are not always this benign: Qiu, Adema & Lane (2005)
demonstrated that 5–80% of tested siRNAs resulted in off-target binding among diverse
organisms.

Off-target sequence similarity increased significantly as the dsRNA increased in length
(linear regression: F1,100 = 623, P < 0.001) (Fig. 1A), with every increase of 100 nt in
the dsRNA resulting in 6 more predicted hits. This strong relationship between dsRNA
length and potential off-target binding can be further demonstrated using only the genes
described in Miyata et al. (2014), in which the authors evaluated the effects of dsRNA
length on RNAi activity in vivo in western corn rootworms. Although the gene targets in
this study were not pesticidal specifically, and thus excluded from our overall analysis, the
authors evaluated silencing of the same gene targets (laccase 2 and ebony) using different
sized dsRNAs to evaluate efficacy. When we examined this suite of genes from a risk
assessment perspective using the same methodology as for the pesticidal RNAs, the longer
dsRNAs returned significantly more regions of off-target sequence similarity in the honey
bee genome (laccase 2: F1,5 = 181, P < 0.001; ebony : F1,2 = 103, P = 0.01) (Fig. 1B).
While intuitive (Bolognesi et al., 2012), this is the first demonstration of the possibility for
increased length-suppression in a non-target organism. Thus, optimizing RNA length to
have maximum gene suppression efficacy in the target pest needs to be balanced against
the non-target risks posed by longer molecules.

Target-species specificity
Taxonomic relatedness of the target organism to honey bees had no effect on potential
binding of siRNAs on the original gene target (non-target binding) (χ2

= 9.4, df = 7,
P = 0.23) (Fig. 2). Contrary to assertions of pesticidal specificity (Bachman et al., 2013),
this implies that silencing of the target gene in a non-target organism may be more likely
to occur from random sequence similarities than based on evolutionary relatedness to
the target organism. Although the pool of available literature is limited with regards
to targeted applications of RNAi against pest species, with certain species being more
frequently researched (e.g., Diabrotica virgifera), our results suggest that non-target
hazard assessments should focus on species of ecological relevance rather than strictly
on phylogenetic relatedness to the target species.

Unfortunately, when conducting bioinformatics analyses for the purposes of a risk
assessment, the availability of sequenced genomes from representative species becomes
a limiting factor. Further, the potential non-target community will differ depending on
the specific pest being targeted, making it difficult to have a standard suite of species
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Figure 1 Pesticidal dsRNA length and potential off-target binding in honey bees. The relationship be-
tween pesticidal dsRNA length and potential off-target binding in honey bees for pesticidal dsRNAs (A)
and the non-pesticidal laccase 2 and ebony genes (data fromMiyata et al. (2014)) (B).

Full-size DOI: 10.7717/peerj.4131/fig-1

to evaluate for non-target effects. Bioinventories are crucial for identifying appropriate
non-target species for each target pest. Supporting initiatives such as i5K (i5K Consortium,
2013), which strives to sequence the genomes of 5,000 representative invertebrates, and
making these genomes freely available, will bolster the applicability of future in silico
analyses aimed at identifying potential risks of gene-oriented pest control.

Targeted gene groups
The homeobox genes and other genes involved in embryonic and developmental pathways
in honey bees frequently shared sequence similarity with the pesticidal dsRNAs, particularly
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Figure 2 Pesticidal dsRNA target organisms and the likelihood of off-target binding in the honey bee
genome. Potential non-target binding of pesticidal dsRNAs in honey bees (y-axis, shaded area) versus the
original target taxa (x-axis), in relation to the total number of examined pesticidal dsRNAs. Taxa are or-
dered by increasing relative divergence time from honey bees.

Full-size DOI: 10.7717/peerj.4131/fig-2

when vATPase subunits were the pesticidal targets (χ2
= 10, df = 4, P = 0.03). 67% of all

tested dsRNAs had the high potential to bind to honey bee developmental genes that were
not the target, and 33% of these shared high similarity with homeobox genes specifically
(Data S1). Although we have an incomplete picture of which genes are expressed in most
genomes at any given time, many of these genes, while important during embryogenesis
and development, support additional critical functions such as cell proliferation and
apoptosis, and are highly conserved across metazoans. In this instance, in silico analysis
identified some of the potential gene targets that could present a hazard requiring unique
assessments across life stages to properly identify a phenotypic effect. If validated in future
in vivo assessments, this screening method may prove useful in identifying appropriate
experimental endpoints in non-target risk assessments.

CONCLUSIONS
Our bioinformatics-based in silico analysis provides a conservative assessment of potential
off-target binding of pesticidal dsRNAs in the honey bee genome; the actual binding affinity
of RISC is more nuanced than 100% or similar sequence similarity for subsequent mRNA
degradation. While some have documented suppression of off-target gene expression with
20/21 nt similarity (Jarosch & Moritz, 2012), others have found silencing with even less
sequence similarity in certain study systems, particularly in the 2–8 nt seed region of the
siRNA. For example, in experiments with cultured human cells, Saxena, Jonsson & Dutta
(2003) found gene silencing with as many as 3–4 bpmismatches in addition to G.U wobbles
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(guanine and uracil have a slight affinity for each other), while Jackson et al. (2003) found
mRNA degradation with only 11/21 contiguous nt. The locations of the mismatches along
the siRNA are also important; perfect sequence similarity of the seed region is particularly
crucial for mRNA recognition (Jackson et al., 2006; Chu et al., 2014). Additionally, the
off-target effects may not be easily predicted, as downstream effects may result in gene
suppression unrelated to the sequence of the original pesticidal molecule (Hanning et al.,
2013). Another area of research that merits attention from a risk assessment perspective is
that of RNA replication of the primary pesticidal molecule within a non-target organism.
It has been repeatedly shown that environmental RNAi is replicated within a cell, and that
the secondary RNAs produced do not always perfectly match the original sequence of the
insecticidal RNA (Pak & Fire, 2007; Sijen et al., 2007). Focusing in silico analyses on only
the primary insecticidal molecule may overlook these potential non-target effects.

However, in silico identification of sequence similarity between a pesticidal dsRNA and
non-target organism’s genome does not imply that RNAi will occur in the non-target
organism. A fundamental difference between RNAi and chemical pesticides resides in their
spectrum andmode of activity. Arguably, biochemical pesticides work on a limited number
of physiological targets within an organism, and the list of potential non-target species
is restricted to those sharing these targets with the pest. The absence of a relationship of
taxonomic relatedness of target and off-target species and the likelihood of gene similarity
between them indicates that the list of species potentially at risk from RNAi initially
includes all of those species that use mRNA for gene expression and have the cellular
machinery to process small RNAs. This spectrum of activity, and broad set of potential
unintended phenotypic effects of the pesticidal RNAi may make predicting the risk of this
technology more challenging than other pesticides. Unintended gene silencing will depend
on a number of factors. The organism would need to possess behavioral characteristics
that would put it into contact with contaminated materials, e.g., leaf tissue versus pollen
versus nectar feeding at a contaminated location. Other factors include the length of the
dsRNA and whether the organism is exposed to siRNA or dsRNA, the identity of the target
or off-target mRNA, the size of a non-target organism’s genome (more off-target binding
would be expected when there are more potential gene targets), the necessary binding
affinity of a particular siRNA, exposure concentration of the dsRNA, and the physiological
state of the insect (Qiu, Adema & Lane, 2005; Baum et al., 2007;Huvenne & Smagghe, 2010;
Gu et al., 2014).

Ecological risk assessment is a complex andmulti-stepped process, and no single piece of
work is sufficient to fully quantify the risk of a toxicological event. We have demonstrated
that an in silico analysis may be used as a first step in establishing whether off-target
binding could pose a significant threat for a particular pesticidal dsRNA in a non-target
organism such as the honey bee. Future experiments to evaluate the usefulness of this
tool are planned that would quantify up/down gene regulation of honey bees exposed to
pesticidal dsRNA. Taken together, these data may provide a basis for designing biologically
appropriate experiments to optimize hazard assessments for applications of this novel
pesticidal technology in field settings where honey bees and other non-target organisms
may be exposed.
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